Abstract
This paper proposes a novel fractional-order African vulture optimization algorithm (FO-AVOA) for solving the optimal reactive power dispatch (ORPD) problem. By integrating fractional calculus into the conventional AVOA framework, the proposed method enhances the exploration–exploitation balance, accelerates convergence, and improves solution robustness. The ORPD problem is formulated as a constrained optimization task with the objective of minimizing real power losses while satisfying generator voltage limits, transformer tap ratios, and reactive power compensator constraints. The general optimization capability of the FO-AVOA is verified using the CEC 2017, 2020, and 2022 benchmark functions. In addition, the method is applied to the IEEE 30-bus and IEEE 57-bus test systems. The results demonstrate significant power loss reductions of up to 15.888% and 24.39% for the IEEE 30-bus and IEEE 57-bus systems, respectively, compared with the conventional AVOA and other state-of-the-art optimization algorithms, along with strong robustness and stability across independent runs. These findings confirm the effectiveness of the FO-AVOA as a reliable optimization tool for modern power system applications.