Dynamics and Stability of Soliton Structures for the Generalized Nonlinear Fractional (3 + 1)-Dimensional Wave Model in Computational Physics
Abstract
1. Introduction
M-Truncated Fractional Derivative
- Section 2 describes the conversion of the partial differential equation (PDE) into an ordinary differential equation (ODE) using a similarity transformation.
- Section 3 describes the main steps of the proposed analytical method in detail and presents the obtained exact solutions.
- Section 4 provides graphical visualizations, including two-dimensional, three-dimensional, and contour plots, to illustrate the different classes of soliton solutions and together with a comprehensive discussion of their associated dynamic wave profiles.
- Section 5 discusses the stability analysis of the obtained soliton solutions.
- Section 6 concludes the study by summarizing the key findings and highlighting the significance of the results.
2. Mathematical Analysis
3. Modified Extended Direct Algebraic Method and Its Application
Application
- Set 1:
4. Graphs
5. Stability Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Murad, M.A.S.; Mustafa, M.A.; Younas, U.; Emadifar, H.; Khalifa, A.S.; Mohammed, W.W.; Ahmed, K.K. Soliton solutions to the generalized derivative nonlinear Schrödinger equation under the effect of multiplicative white noise and conformable derivative. Sci. Rep. 2025, 15, 19599. [Google Scholar] [CrossRef]
- Wang, K. New computational approaches to the fractional coupled nonlinear Helmholtz equation. Eng. Comput. 2024, 41, 1285–1300. [Google Scholar] [CrossRef]
- Aydın, Z.; Taşcan, F. Application of new Kudryashov method to Sawada-Kotera and Kaup-Kupershmidt equations. Comput. Methods Differ. Equ. 2025, 13, 608–617. [Google Scholar]
- Rahioui, M.; El Kinani, E.H.; Ouhadan, A. Bäcklund Transformations, Consistent Tanh Expansion Solvability, Interaction Solutions, and Some Exact Solitary Waves of a (3+1)-dimensional P-type Evolution Equation. Int. J. Theor. Phys. 2025, 64, 187. [Google Scholar] [CrossRef]
- Razzaq, W.; Zafar, A.; Nazir, A.; Ahmad, H.; Zaagan, A.A. Dark, bright and singular optical solitons for Biswas–Milovic equation with Kerr and dual power law nonlinearities. Mod. Phys. Lett. B 2025, 39, 2450443. [Google Scholar] [CrossRef]
- Li, Z. Optical Solutions of the Nonlinear Kodama Equation with the M-Truncated Derivative via the Extended (G′/G)-Expansion Method. Fractal Fract. 2025, 9, 300. [Google Scholar] [CrossRef]
- Ullah, M.S.; Ali, M.Z.; Roshid, H.O. Stability analysis, model expansion method, and diverse chaos-detecting tools for the DSKP model. Sci. Rep. 2025, 15, 13658. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Alsharidi, A.K. Truncated M-Fractional Exact Solutions, Stability Analysis, and Modulation Instability of the Classical Lonngren Wave Model. Mathematics 2025, 13, 3107. [Google Scholar] [CrossRef]
- Hossain, S.; Rahman, M.M.; Bashar, M.H.; Biswas, S.; Roshid, M.M. Dynamical Structure of the Soliton Solution of M-Fractional (2+1)-Dimensional Heisenberg Ferromagnetic Spin Chain Model Through Advanced exp(Δ(ξ))-Expansion Schemes in Mathematical Physics. J. Appl. Math. 2025, 2025, 5535543. [Google Scholar] [CrossRef]
- Razzaq, W.; Zafar, A. Exploring new traveling and solitary wave solutions of conformable fractional (3+1)-D BLMP differential equations. In Advances in Computational Methods and Modeling for Science and Engineering; Elsevier: Amsterdam, The Netherlands, 2025; pp. 3–14. [Google Scholar]
- Khan, M.I.; Farooq, A.; Nisar, K.S.; Shah, N.A. Unveiling new exact solutions of the unstable nonlinear Schrödinger equation using the improved modified Sardar sub-equation method. Results Phys. 2024, 59, 107593. [Google Scholar] [CrossRef]
- Bilal, M.; Khan, A.; Ullah, I.; Khan, H.; Alzabut, J.; Alkhawar, H.M. Application of modified extended direct algebraic method to nonlinear fractional diffusion reaction equation with cubic nonlinearity. Bound. Value Probl. 2025, 2025, 16. [Google Scholar] [CrossRef]
- Waqar, M.; Saad, K.M.; Abbas, M.; Vivas-Cortez, M.; Hamanah, W.M. Diverse wave solutions for the (2+1)-dimensional Zoomeron equation using the modified extended direct algebraic approach. AIMS Math. 2025, 10, 12868–12887. [Google Scholar] [CrossRef]
- Yusuf, G.; Sabi’u, J.; Ibrahim, I.S.; Balili, A. Wave propagation patterns for the (2+1) dimensional modified complex KDV system via new extended direct algebra method. J. Basic Appl. Sci. Res. 2025, 3, 53–61. [Google Scholar] [CrossRef]
- Shafique, T.; Agarwal, R.P.; Mohammed, P.O.; Abbas, M.; Vivas-Cortez, M.; Nazir, T.; Djaouti, A.M. Abundant Solitons Solutions of the (2+1)-Dimensional Kadomtsev Petviashvili-Modified Equal width Model. Fractals 2025. [Google Scholar] [CrossRef]
- Samir, I.; Ahmed, H.M.; Emadifar, H.; Ahmed, K.K. Traveling and soliton waves and their characteristics in the extended (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid. Partial Differ. Equ. Appl. Math. 2025, 14, 101146. [Google Scholar] [CrossRef]
- Raheel, M.; Zafar, A.; Razzaq, W.; Qousini, M.; Almusawa, M.Y. New analytical wave solitons and some other wave solutions of truncated M-fractional LPD equation along parabolic law of non-linearity. Opt. Quantum Electron. 2023, 55, 592. [Google Scholar] [CrossRef]
- Singh, K.; Kourakis, I. Generalized analytical solutions of a Korteweg–de Vries (KdV) equation with arbitrary real coefficients: Association with the plasma-fluid framework and physical interpretation. Wave Motion 2025, 132, 103443. [Google Scholar] [CrossRef]
- Liu, M.; Xiao, X. Topological properties, exact solutions and chaotic behaviors for coupled Drinfel’d–Sokolov–Wilson equation with conformal derivative. Eng. Comput. 2025, 42, 900–925. [Google Scholar] [CrossRef]
- Xu, L.; Yin, X.; Cao, N.; Bai, S. Multi-soliton solutions of a variable coefficient Schrödinger equation derived from vorticity equation. Nonlinear Dyn. 2024, 112, 2197–2208. [Google Scholar] [CrossRef]
- Zafar, A.; Razzaq, W.; Nazir, A.; Alomair, M.A.; Al Naim, A.S.; Alomair, A. Bifurcation Analysis and Solitons Dynamics of the Fractional Biswas–Arshed Equation via Analytical Method. Mathematics 2025, 13, 3147. [Google Scholar] [CrossRef]
- Razzaq, W.; Zafar, A. Machine learning-enhanced soliton solutions for the Lonngren-wave equation: An integration of Painlevé analysis and Hirota bilinear method. Rend. Lincei Sci. Fis. Nat. 2025, 1–16. [Google Scholar] [CrossRef]
- Kawser, M.A.; Akbar, M.A.; Khan, M.A.; Ghazwani, H.A. Exact soliton solutions and the significance of time-dependent coefficients in the Boussinesq equation: Theory and application in mathematical physics. Sci. Rep. 2024, 14, 762. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.Y. In an ocean or a river: Bilinear auto-Bäcklund transformations and similarity reductions on an extended time-dependent (3+1)-dimensional shallow water wave equation. China Ocean Eng. 2025, 39, 160–165. [Google Scholar] [CrossRef]
- Wang, K.J.; Shi, F.; Li, S.; Li, G.; Xu, P. Resonant Y-type soliton, interaction wave and other wave solutions to the (3+1)-dimensional shallow water wave equation. J. Math. Anal. Appl. 2025, 542, 128792. [Google Scholar] [CrossRef]
- Şenol, M. Abundant solitary wave solutions to the new extended (3+1)-dimensional nonlinear evolution equation arising in fluid dynamics. Mod. Phys. Lett. B 2025, 39, 2450475. [Google Scholar] [CrossRef]
- Gao, X.T.; Tian, B. In a river or an ocean: Similarity-reduction work on a (3+1)-dimensional extended shallow water wave equation. Appl. Math. Lett. 2025, 160, 109310. [Google Scholar] [CrossRef]
- Feng, C.H.; Tian, B.; Gao, X.T. Bilinear Bäcklund transformations, as well as n-soliton, breather, fission/fusion and hybrid solutions for a (3+1)-dimensional integrable wave equation in a fluid. Qual. Theory Dyn. Syst. 2025, 24, 1–19. [Google Scholar] [CrossRef]
- Khalifa, A.S.; Badra, N.M.; Ahmed, H.M.; Rabie, W.B.; Emadifar, H.; Ahmed, K.K. Building novel solitary wave solutions for the generalized non-linear (3+1)-dimensional wave equation with gas bubbles in fluids using an analytic method. Partial Differ. Equ. Appl. Math. 2025, 101272. [Google Scholar] [CrossRef]
- Zafar, A.; Razzaq, W.; Rezazadeh, H.; Eslami, M. The complex hyperbolic Schrodinger dynamical equation with a truncated M-fractional by using simplest equation method. Comput. Methods Differ. Equ. 2024, 12, 44–55. [Google Scholar]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharidi, A.K.; Qousini, M. Dynamics and Stability of Soliton Structures for the Generalized Nonlinear Fractional (3 + 1)-Dimensional Wave Model in Computational Physics. Fractal Fract. 2025, 9, 806. https://doi.org/10.3390/fractalfract9120806
Alsharidi AK, Qousini M. Dynamics and Stability of Soliton Structures for the Generalized Nonlinear Fractional (3 + 1)-Dimensional Wave Model in Computational Physics. Fractal and Fractional. 2025; 9(12):806. https://doi.org/10.3390/fractalfract9120806
Chicago/Turabian StyleAlsharidi, Abdulaziz Khalid, and Maysoon Qousini. 2025. "Dynamics and Stability of Soliton Structures for the Generalized Nonlinear Fractional (3 + 1)-Dimensional Wave Model in Computational Physics" Fractal and Fractional 9, no. 12: 806. https://doi.org/10.3390/fractalfract9120806
APA StyleAlsharidi, A. K., & Qousini, M. (2025). Dynamics and Stability of Soliton Structures for the Generalized Nonlinear Fractional (3 + 1)-Dimensional Wave Model in Computational Physics. Fractal and Fractional, 9(12), 806. https://doi.org/10.3390/fractalfract9120806
