Controllability of Fractional Complex Networks
Abstract
1. Introduction
2. Preliminaries
3. Controllability Analysis of Linear Fractional Complex Networks
4. Controllability Analysis of Nonlinear Fractional Complex Networks
4.1. Nonlinear Networks Represented by a Weighted Adjacency Matrix
4.2. Nonlinear Networks Represented by a Laplacian Matrix
5. Numerical Implementation
6. Conclusions
- •
- Solve the other control problems like optimal control, approximate controllability, etc.;
- •
- Develop the controllability and observability on complex fractional time-varying systems;
- •
- Implement controllability for complex time-varying systems numerically using the Matlab/Simulink method.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, L.Y.; Kumara, S.; Albert, R. Complex networks: An engineering view. IEEE Circuits Syst. Mag. 2010, 10, 10–25. [Google Scholar] [CrossRef]
- MacArthur, B.D.; Sánchez-García, R.J.; Anderson, J.W. Symmetry in complex networks. Discret. Appl. Math. 2008, 156, 3525–3531. [Google Scholar] [CrossRef]
- Strogatz, S.H. Exploring complex networks. Nature 2001, 410, 268–276. [Google Scholar] [CrossRef]
- Barabási, A.L.; Oltvai, Z.N. Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet. 2004, 5, 101–113. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhao, C.; Di, Z.; Wang, W.-X.; Lai, Y.-C. Exact controllability of complex networks. Nat. Commun. 2013, 4, 2447. [Google Scholar] [CrossRef]
- Balachandran, K.; Govindaraj, V.; Rivero, M.; Trujillo, J.J. Controllability of fractional damped dynamical systems. Appl. Math. Comput. 2015, 257, 66–73. [Google Scholar] [CrossRef]
- Xiang, L.; Chen, F.; Ren, W.; Chen, G. Advances in network controllability. IEEE Circuits Syst. Mag. 2019, 19, 8–32. [Google Scholar] [CrossRef]
- Liu, B.; Chu, T.; Wang, L.; Xie, G. Controllability of a leader-follower dynamic network with switching topology. IEEE Trans. Autom. Control 2008, 53, 1009–1013. [Google Scholar] [CrossRef]
- Cai, N. On quantitatively measuring controllability of complex networks. Phys. A 2017, 474, 282–292. [Google Scholar] [CrossRef]
- Chen, G. Pinning control and controllability of complex dynamical networks. Int. J. Autom. Comput. 2017, 14, 1–9. [Google Scholar] [CrossRef]
- Whalen, A.J.; Brennan, S.N.; Sauer, T.D.; Schiff, S.J. Observability and controllability of nonlinear networks: The role of symmetry. Phys. Rev. X 2015, 5, 011005. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Slotine, J.J.; Barabási, A.L. Controllability of complex networks. Nature 2011, 473, 167–173. [Google Scholar] [CrossRef]
- Ma, W.; Ma, N.; Dai, C.; Chen, Y.Q.; Wang, X. Fractional modeling and optimal control strategies for mutated COVID-19 pandemic. Math. Methods Appl. Sci. 2022, 1–25. [Google Scholar] [CrossRef]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equation; John Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Li, C.P.; Deng, W.H.; Xu, D. Chaos synchronization of the Chua system with a fractional order. Phys. A 2006, 360, 171–185. [Google Scholar] [CrossRef]
- Monje, C.A.; Chen, Y.Q.; Vinagre, B.M.; Xue, D.Y.; Feliu, V. Fractional-Order Systems and Controls; Springer-Verlag: London, UK, 2010. [Google Scholar]
- Ma, W.; Li, Z.; Ma, N. Synchronization of discrete fractional-order complex networks with and without unknown topology. Chaos 2022, 32, 013112. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Ahn, H.S.; Xue, D.Y. Robust controllability of interval fractional order linear time invariant systems. Signal Process. 2006, 86, 2794–2802. [Google Scholar] [CrossRef]
- Balachandran, K.; Govindaraj, V.; Rodríguez-Germá, L.; Trujillo, J.J. Controllability results for nonlinear fractional order dynamical systems. J. Optim. Theory Appl. 2013, 156, 33–44. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Li, H. Controllability result of nonlinear higher order fractional damped dynamical system. J. Nonlinear Sci. Appl. 2017, 10, 325–337. [Google Scholar] [CrossRef]
- Ahmad, B.; Nieto, J.J. Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 2009, 58, 1838–1843. [Google Scholar] [CrossRef]
- Govindaraj, V.; Balachandran, K.; George, R.K. Numerical Approach for the Controllability of Composite Fractional Dynamical Systems. J. Appl. Nonlinear Dyn. 2018, 7, 59–72. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, D.Y.; Xu, B.B.; Zhang, R.F. Controllability of fractional-order directed complex networks. Mod. Phys. Lett. B 2014, 28, 1450211. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, D.; Xu, B.B.; Zhou, R. Controllability of fractional-order directed complex networks with self loop and double edge structure. J. Circuits Syst. Comput. 2015, 24, 1550087. [Google Scholar] [CrossRef]
- Wang, L.; Chen, G.; Wang, X.; Tang, W.K.S. Controllability of networked MIMO systems. Automatica 2016, 69, 405–409. [Google Scholar] [CrossRef]
- García, P.M.I. Analyzing controllability of neural networks. Wseas Trans. Circuits Syst. 2019, 18, 1–6. [Google Scholar]
- Biggs, N.L. Algebraic Graph Theory; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Li, C.P.; Deng, W.H. Remarks on fractional derivatives. Appl. Math. Comput. 2007, 187, 777–784. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: San Diego, CA, USA, 1998. [Google Scholar]
- Zeidler, E. Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems; Springer: New York, NY, USA, 1986. [Google Scholar]
- Govindaraj, V.; George, R.K. Controllability of fractional dynamical systems: A functional analytic approach. Math. Control Relat. Fields 2017, 7, 537. [Google Scholar] [CrossRef]
- Eǧecioǧlu, Ö.; Garsia, A.M. Lessons in Enumerative Combinatorics; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Xue, D.Y. FOTF Toolbox. MATLAB Central File Exchange. 2023. Available online: https://www.mathworks.com/matlabcentral/fileexchange/60874-fotf-toolbox (accessed on 2 October 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, X.; Ma, W.; Li, X. Controllability of Fractional Complex Networks. Fractal Fract. 2024, 8, 43. https://doi.org/10.3390/fractalfract8010043
Bao X, Ma W, Li X. Controllability of Fractional Complex Networks. Fractal and Fractional. 2024; 8(1):43. https://doi.org/10.3390/fractalfract8010043
Chicago/Turabian StyleBao, Xionggai, Weiyuan Ma, and Xin Li. 2024. "Controllability of Fractional Complex Networks" Fractal and Fractional 8, no. 1: 43. https://doi.org/10.3390/fractalfract8010043
APA StyleBao, X., Ma, W., & Li, X. (2024). Controllability of Fractional Complex Networks. Fractal and Fractional, 8(1), 43. https://doi.org/10.3390/fractalfract8010043