A New Technique to Achieve Torsional Anchor of Fractional Torsion Equation Using Conservation Laws
Abstract
:1. Introduction
2. Converting the FDE to Approximate ODE
3. Lie Group Analysis for Perturbed Equation (12)
4. Classification of Group-Invariant Solution
4.1. Optimal System of Perturbed Fractional Torsion Equation
Ad[Xi, Xj] | ||
---|---|---|
Ad[Xi, Xj] | ||
---|---|---|
Ad[Xi, Xj] | ||
---|---|---|
Ad[Xi, Xj] | ||
---|---|---|
4.2. Reduction and Exact Solution of Perturbed Torsion Equation (18)
5. ACL for Equation (12)
5.1. Construction of Conservation Laws
5.2. ACL for Torsion Perturbed Fractional Equation
- (I)
- For , , and component of ACL is:
- (II)
- Symmetry , yields and , therefore
- (III)
- For unperturbed symmetry , we obtain and , so we have
- (IV)
- Consider the symmetry , with and , we have
- (V)
- For , , , we have
- (VI)
- For , and , we conclude
- (VII)
- For , and , we obtain
- (VIII)
- Symmetry , gives and , we get
- (VIIII)
- The approximate symmetry with and , yields
- (X)
- Similarly for , and , we derive
- (XI)
- Finally, for , and , we obtain
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, J.-H. Fractal calculus and its geometrical explanation. Results Phys. 2018, 10, 272–276. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Srivastava, V.K.; Awasthi, M.K.; Tamsir, M. RDTM Solution of Caputo time fractional-order hyperbolic telegraph equation. AIP Adv. 2013, 3, 032142. [Google Scholar]
- Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Continuous transformation groups of fractional differential equations. Vestn. Usatu 2007, 9, 125–135. [Google Scholar]
- Kadkhoda, N.; Jafari, H. An analytical approach to obtain exact solutions of some space-time conformable fractional differential equations. Adv. Differ. Equ. 2019, 1, 428. [Google Scholar] [CrossRef] [Green Version]
- Lu, B. The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 2012, 395, 684–693. [Google Scholar] [CrossRef] [Green Version]
- Jafari, H.; Kadkhoda, N.; Azadi, M.; Yaghobi, M. Group classification of the time-fractional Kaup-Kupershmidt equation. Sci. Iran. 2017, 24, 302–307. [Google Scholar]
- Kang-Jia, W. Bäcklund transformation and diverse exact explicit solutions of the fractal combined Kdv–mkdv equation. Fractals 2022, 30, 2250189. [Google Scholar]
- Sahoo, S.; Ray, S.S. Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations. Comput. Math. Appl. 2015, 70, 158–166. [Google Scholar]
- Guner, O.; Atik, H.; Kayyrzhanovich, A.A. New exact solution for space-time fractional differential equations via -expansion method. Optik 2017, 130, 696–701. [Google Scholar] [CrossRef]
- Osman, M.S. Multiwave solutions of time-fractional (2+1)-dimensional Nizhnik-Novikov-Veselov equations. Pramana J. Phys. 2017, 88, 67–75. [Google Scholar]
- Kang-Jia, W.; Feng, S.; Jing, S.; Jing-Hua, L.; Guo-Dong, W. Non-differentiable exact solutions of the local fractional zakharov–kuznetsov equation on the cantor sets. Fractals 2023, 31, 2350028. [Google Scholar]
- Baikov, V.A.; Gazizov, R.K.; Ibragimov, N.H. Perturbation methods in group analysis. J. Sov. Math. 1991, 55, 1450–1490. [Google Scholar] [CrossRef]
- Euler, M.; Euler, N.; Kohler, A. On the construction of approximate solutions for a multi-dimensional nonlinear heat equation. J. Phys. A Math. Gen. 1994, 27, 2083–2092. [Google Scholar] [CrossRef]
- Kara, A.F.; Mahomed, F.M.; Qu, C.Z. Approximate potential symmetries for partial differential equations. J. Phys. Math. Gen. 2000, 33, 6601–6613. [Google Scholar] [CrossRef]
- Habibi, N.; Lashkarian, E.; Dastranj, E.; Hejazi, S.R. Lie symmetry analysis, conservation laws and numerical approximations of time-fractional Fokker-Planck equations for special stochastic process in foreign exchange markets. Physical A 2019, 513, 750–766. [Google Scholar] [CrossRef]
- Mahomed, F.M.; Qu, C.Z. Approximate conditional symmetries for partial differential equations. J. Phys. Math. Gen. 2000, 33, 343–356. [Google Scholar] [CrossRef]
- Kadkhoda, N.; Lashkarian, E.; Inc, M.; Akinlar, M.A.; Chu, Y.M. New exact solutions and conservation laws to the fractional-order Fokker–Planck equations. Symmetry 2020, 12, 1282. [Google Scholar] [CrossRef]
- Ibragimov, N.H. Nonlinear self-adjointness in constructing conservation laws. J. Phys. Math. Theor. 2011, 7, 432002. [Google Scholar] [CrossRef]
- Ibragimov, N.H.; Kovalev, V.F. Approximate and Renormgroup Symmetries. In Nonlinear Physical Science, 1st ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Johnpillai, A.G.; Kara, A.H. Variational Formulation of Approximate Symmetries and Conservation Laws. Int. J. Theor. Phys. 2001, 40, 1501–1509. [Google Scholar] [CrossRef]
- Johnpillai, A.G.; Kara, A.H.; Mahomed, F.M. A basis of approximate conservation laws for PDEs with a small parameter. Int. J. Nonlinear Mech. 2006, 41, 830–837. [Google Scholar] [CrossRef]
- Johnpillai, A.G.; Kara, A.H.; Mahomed, F.M. Approximate Noether type symmetries and conservation laws via partial Lagrangians for PDEs with a small parameter. J. Comput. Appl. Math. 2009, 223, 508–518. [Google Scholar]
- Kara, A.H.; Mahomed, F.M.; Unal, G. Approximate Symmetries and Conservation Laws with Applications. Int. J. Theor. Phys. 1999, 38, 2389–2399. [Google Scholar] [CrossRef]
- Buckwar, E.; Luchko, Y. Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Nand Appl. 1998, 227, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Ibragimov, N.H. Transformation Groups Applied to Mathematical Physics; Reidel, D., Ed.; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Olver, J.P. Application of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1986. [Google Scholar]
- Lukashchuk, S.Y. Conservation laws for time-fractional subdiffusion and diffusion-wave equations. Nonlinear Dyn. 2015, 80, 791–802. [Google Scholar] [CrossRef] [Green Version]
- Lukashchuk, S.Y. Constructing conservation laws for fractional order integro-differential equations. Theor. Math. Phys. 2015, 184, 1049–1066. [Google Scholar] [CrossRef]
- Hejazi, S.R.; Hosseinpour, S.; Lashkaian, E. Approximate symmetries, conservation laws and numerical solutions for a class of perturbed linear wave type system. Quaest. Math. 2019, 10, 1391–1409. [Google Scholar]
- Lukashchuk, S.Y. Approximate conservation laws for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2019, 68, 147–159. [Google Scholar]
- Mainardy, F. Fractional Calculus and Waves in Linear Viscoelasticity, An Introduction to Mathematical Models; Imperial College Press: Singapore, 2010. [Google Scholar]
- Sabatier, J.; Agrawal, O.P.; Machado, J.A.T. Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publisers: London, UK, 1993. [Google Scholar]
- Zhou, Y.; Wang, J.; Zhang, L. Basic Theory of Fractional Differential Equations; World Scientific: London, UK, 2016. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Kiryakova, V. Generalised Fractional Calculus and Applications; CRC Press: Boca Raton, FL, USA, 1994; Volume 301. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: New York, NY, USA, 1999. [Google Scholar]
PE | J | 2PE | J |
---|---|---|---|
140 | |||
160 | |||
180 | |||
200 | |||
220 | |||
240 | |||
270 | |||
300 | |||
330 | |||
370 | |||
400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadkhoda, N.; Lashkarian, E.; Jafari, H.; Khalili, Y. A New Technique to Achieve Torsional Anchor of Fractional Torsion Equation Using Conservation Laws. Fractal Fract. 2023, 7, 609. https://doi.org/10.3390/fractalfract7080609
Kadkhoda N, Lashkarian E, Jafari H, Khalili Y. A New Technique to Achieve Torsional Anchor of Fractional Torsion Equation Using Conservation Laws. Fractal and Fractional. 2023; 7(8):609. https://doi.org/10.3390/fractalfract7080609
Chicago/Turabian StyleKadkhoda, Nematollah, Elham Lashkarian, Hossein Jafari, and Yasser Khalili. 2023. "A New Technique to Achieve Torsional Anchor of Fractional Torsion Equation Using Conservation Laws" Fractal and Fractional 7, no. 8: 609. https://doi.org/10.3390/fractalfract7080609
APA StyleKadkhoda, N., Lashkarian, E., Jafari, H., & Khalili, Y. (2023). A New Technique to Achieve Torsional Anchor of Fractional Torsion Equation Using Conservation Laws. Fractal and Fractional, 7(8), 609. https://doi.org/10.3390/fractalfract7080609