A New Technique to Achieve Torsional Anchor of Fractional Torsion Equation Using Conservation Laws
Abstract
1. Introduction
2. Converting the FDE to Approximate ODE
3. Lie Group Analysis for Perturbed Equation (12)
4. Classification of Group-Invariant Solution
4.1. Optimal System of Perturbed Fractional Torsion Equation
Ad[Xi, Xj] | ||
---|---|---|
Ad[Xi, Xj] | ||
---|---|---|
Ad[Xi, Xj] | ||
---|---|---|
Ad[Xi, Xj] | ||
---|---|---|
4.2. Reduction and Exact Solution of Perturbed Torsion Equation (18)
5. ACL for Equation (12)
5.1. Construction of Conservation Laws
5.2. ACL for Torsion Perturbed Fractional Equation
- (I)
- For , , and component of ACL is:
- (II)
- Symmetry , yields and , therefore
- (III)
- For unperturbed symmetry , we obtain and , so we have
- (IV)
- Consider the symmetry , with and , we have
- (V)
- For , , , we have
- (VI)
- For , and , we conclude
- (VII)
- For , and , we obtain
- (VIII)
- Symmetry , gives and , we get
- (VIIII)
- The approximate symmetry with and , yields
- (X)
- Similarly for , and , we derive
- (XI)
- Finally, for , and , we obtain
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, J.-H. Fractal calculus and its geometrical explanation. Results Phys. 2018, 10, 272–276. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Srivastava, V.K.; Awasthi, M.K.; Tamsir, M. RDTM Solution of Caputo time fractional-order hyperbolic telegraph equation. AIP Adv. 2013, 3, 032142. [Google Scholar]
- Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Continuous transformation groups of fractional differential equations. Vestn. Usatu 2007, 9, 125–135. [Google Scholar]
- Kadkhoda, N.; Jafari, H. An analytical approach to obtain exact solutions of some space-time conformable fractional differential equations. Adv. Differ. Equ. 2019, 1, 428. [Google Scholar] [CrossRef]
- Lu, B. The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 2012, 395, 684–693. [Google Scholar] [CrossRef]
- Jafari, H.; Kadkhoda, N.; Azadi, M.; Yaghobi, M. Group classification of the time-fractional Kaup-Kupershmidt equation. Sci. Iran. 2017, 24, 302–307. [Google Scholar]
- Kang-Jia, W. Bäcklund transformation and diverse exact explicit solutions of the fractal combined Kdv–mkdv equation. Fractals 2022, 30, 2250189. [Google Scholar]
- Sahoo, S.; Ray, S.S. Improved fractional sub-equation method for (3+1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations. Comput. Math. Appl. 2015, 70, 158–166. [Google Scholar]
- Guner, O.; Atik, H.; Kayyrzhanovich, A.A. New exact solution for space-time fractional differential equations via -expansion method. Optik 2017, 130, 696–701. [Google Scholar] [CrossRef]
- Osman, M.S. Multiwave solutions of time-fractional (2+1)-dimensional Nizhnik-Novikov-Veselov equations. Pramana J. Phys. 2017, 88, 67–75. [Google Scholar]
- Kang-Jia, W.; Feng, S.; Jing, S.; Jing-Hua, L.; Guo-Dong, W. Non-differentiable exact solutions of the local fractional zakharov–kuznetsov equation on the cantor sets. Fractals 2023, 31, 2350028. [Google Scholar]
- Baikov, V.A.; Gazizov, R.K.; Ibragimov, N.H. Perturbation methods in group analysis. J. Sov. Math. 1991, 55, 1450–1490. [Google Scholar] [CrossRef]
- Euler, M.; Euler, N.; Kohler, A. On the construction of approximate solutions for a multi-dimensional nonlinear heat equation. J. Phys. A Math. Gen. 1994, 27, 2083–2092. [Google Scholar] [CrossRef]
- Kara, A.F.; Mahomed, F.M.; Qu, C.Z. Approximate potential symmetries for partial differential equations. J. Phys. Math. Gen. 2000, 33, 6601–6613. [Google Scholar] [CrossRef]
- Habibi, N.; Lashkarian, E.; Dastranj, E.; Hejazi, S.R. Lie symmetry analysis, conservation laws and numerical approximations of time-fractional Fokker-Planck equations for special stochastic process in foreign exchange markets. Physical A 2019, 513, 750–766. [Google Scholar] [CrossRef]
- Mahomed, F.M.; Qu, C.Z. Approximate conditional symmetries for partial differential equations. J. Phys. Math. Gen. 2000, 33, 343–356. [Google Scholar] [CrossRef]
- Kadkhoda, N.; Lashkarian, E.; Inc, M.; Akinlar, M.A.; Chu, Y.M. New exact solutions and conservation laws to the fractional-order Fokker–Planck equations. Symmetry 2020, 12, 1282. [Google Scholar] [CrossRef]
- Ibragimov, N.H. Nonlinear self-adjointness in constructing conservation laws. J. Phys. Math. Theor. 2011, 7, 432002. [Google Scholar] [CrossRef]
- Ibragimov, N.H.; Kovalev, V.F. Approximate and Renormgroup Symmetries. In Nonlinear Physical Science, 1st ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Johnpillai, A.G.; Kara, A.H. Variational Formulation of Approximate Symmetries and Conservation Laws. Int. J. Theor. Phys. 2001, 40, 1501–1509. [Google Scholar] [CrossRef]
- Johnpillai, A.G.; Kara, A.H.; Mahomed, F.M. A basis of approximate conservation laws for PDEs with a small parameter. Int. J. Nonlinear Mech. 2006, 41, 830–837. [Google Scholar] [CrossRef]
- Johnpillai, A.G.; Kara, A.H.; Mahomed, F.M. Approximate Noether type symmetries and conservation laws via partial Lagrangians for PDEs with a small parameter. J. Comput. Appl. Math. 2009, 223, 508–518. [Google Scholar]
- Kara, A.H.; Mahomed, F.M.; Unal, G. Approximate Symmetries and Conservation Laws with Applications. Int. J. Theor. Phys. 1999, 38, 2389–2399. [Google Scholar] [CrossRef]
- Buckwar, E.; Luchko, Y. Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Nand Appl. 1998, 227, 81–97. [Google Scholar] [CrossRef]
- Ibragimov, N.H. Transformation Groups Applied to Mathematical Physics; Reidel, D., Ed.; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Olver, J.P. Application of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1986. [Google Scholar]
- Lukashchuk, S.Y. Conservation laws for time-fractional subdiffusion and diffusion-wave equations. Nonlinear Dyn. 2015, 80, 791–802. [Google Scholar] [CrossRef]
- Lukashchuk, S.Y. Constructing conservation laws for fractional order integro-differential equations. Theor. Math. Phys. 2015, 184, 1049–1066. [Google Scholar] [CrossRef]
- Hejazi, S.R.; Hosseinpour, S.; Lashkaian, E. Approximate symmetries, conservation laws and numerical solutions for a class of perturbed linear wave type system. Quaest. Math. 2019, 10, 1391–1409. [Google Scholar]
- Lukashchuk, S.Y. Approximate conservation laws for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2019, 68, 147–159. [Google Scholar]
- Mainardy, F. Fractional Calculus and Waves in Linear Viscoelasticity, An Introduction to Mathematical Models; Imperial College Press: Singapore, 2010. [Google Scholar]
- Sabatier, J.; Agrawal, O.P.; Machado, J.A.T. Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publisers: London, UK, 1993. [Google Scholar]
- Zhou, Y.; Wang, J.; Zhang, L. Basic Theory of Fractional Differential Equations; World Scientific: London, UK, 2016. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Kiryakova, V. Generalised Fractional Calculus and Applications; CRC Press: Boca Raton, FL, USA, 1994; Volume 301. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: New York, NY, USA, 1999. [Google Scholar]
PE | J | 2PE | J |
---|---|---|---|
140 | |||
160 | |||
180 | |||
200 | |||
220 | |||
240 | |||
270 | |||
300 | |||
330 | |||
370 | |||
400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadkhoda, N.; Lashkarian, E.; Jafari, H.; Khalili, Y. A New Technique to Achieve Torsional Anchor of Fractional Torsion Equation Using Conservation Laws. Fractal Fract. 2023, 7, 609. https://doi.org/10.3390/fractalfract7080609
Kadkhoda N, Lashkarian E, Jafari H, Khalili Y. A New Technique to Achieve Torsional Anchor of Fractional Torsion Equation Using Conservation Laws. Fractal and Fractional. 2023; 7(8):609. https://doi.org/10.3390/fractalfract7080609
Chicago/Turabian StyleKadkhoda, Nematollah, Elham Lashkarian, Hossein Jafari, and Yasser Khalili. 2023. "A New Technique to Achieve Torsional Anchor of Fractional Torsion Equation Using Conservation Laws" Fractal and Fractional 7, no. 8: 609. https://doi.org/10.3390/fractalfract7080609
APA StyleKadkhoda, N., Lashkarian, E., Jafari, H., & Khalili, Y. (2023). A New Technique to Achieve Torsional Anchor of Fractional Torsion Equation Using Conservation Laws. Fractal and Fractional, 7(8), 609. https://doi.org/10.3390/fractalfract7080609