Nonlinear Integral Inequalities Involving Tempered Ψ-Hilfer Fractional Integral and Fractional Equations with Tempered Ψ-Caputo Fractional Derivative
Abstract
:1. Introduction and Preliminaries
2. Integral Inequalities
3. Applications to Fractional Differential Equations with Tempered -Caputo Derivative
3.1. Blowing-Up Solutions
3.2. Stability
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henry, D. Geometric Theory of Semilinear Parabolic Equations; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1981. [Google Scholar]
- Medved’, M. A new approach to an analysis of Henry type integral inequalities and their Bihari type versions. J. Math. Anal. Appl. 1997, 214, 349–366. [Google Scholar] [CrossRef] [Green Version]
- Medved’, M. Integral inequalities and global solutions of semilinear evolution equations. J. Math. Anal. Appl. 2002, 267, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Kirane, M.; Tatar, N.E. Global existence and stability of some semilinear problems. Arch. Math. 2000, 36, 33–44. [Google Scholar]
- Medved’, M. Singular integral inequalities and stability of semilinear parabolic equations. Arch. Math. 1998, 34, 183–190. [Google Scholar]
- Tatar, N.E. The role of an integral inequality in the study of certain differential equations. J. Ineq. Pure Appl. Math. 2005, 6, 1–13. [Google Scholar]
- Medved’, M.; Pospíšil, M. On the existence and exponential stability for differential equations with multiple delays and nonlinearity depending on fractional substantial integrals. Electron. J. Qual. Theory Differ. Equ. 2019, 43, 1–17. [Google Scholar] [CrossRef]
- Alsaedi, A.; Ahmad, B.; Kirane, M. A survey of useful inequalities in fractional calculus. Fract. Calc. Appl. Anal. 2017, 20, 574–594. [Google Scholar] [CrossRef]
- Sousa, J.C.; De Oliveira, E.C. On the Ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Roohi, M.; Zhang, C.; Chen, Y. Adaptive model-free synchronization of different fractional-order neural networks with an application in cryptography. Nonlinear Dyn. 2020, 100, 3979–4001. [Google Scholar]
- Taheri, M.; Zhang, C.; Berardehi, Z.R.; Chen, Y.; Roohi, M. No-chatter model-free sliding mode control for synchronization of chaotic fractional-order systems with application in image encryption. Multimed. Tools Appl. 2022, 81, 24167–24197. [Google Scholar] [CrossRef]
- Medved’, M.; Brestovanská, E. Differential equations with tempered Ψ-Caputo fractional derivative. Math. Model. Anal. 2021, 26, 631–650. [Google Scholar] [CrossRef]
- Sousa, J.C.; De Oliveira, E.C. A Gronwall inequality and the Cauchy-type problems by means of Ψ-Hilfer operator. Differ. Equ. Appl. 2019, 11, 87–106. [Google Scholar]
- Kahouli, O.; Boucenna, D.; Makhlouf, A.B.; Alruwaily, Y. Some new weakly singular integral inequalities with applications to differential equations in frame of tempered χ-fractional derivatives. Mathematics 2022, 10, 3792. [Google Scholar]
- Mali, A.D.; Kucche, K.D.; Fernandez, A.; Fahad, H.M. On tempered fractional calculus with respect to functions and the associated fractional differential equations. Math. Meth. Appl. Sci. 2022, 45, 11134–11157. [Google Scholar] [CrossRef]
- Kucche, K.D.; Mali, A.D.; Fernandez, A.; Fahad, H.M. On tempered Hilfer fractional derivative with respect to functions and the associated fractional differential equations. Chaos Solitons Fractals 2022, 163, 112547. [Google Scholar] [CrossRef]
- Butler, G.; Rogers, T. A generalization of a lemma of Bihari and applications to piecewise estimates for integral equations. J. Math. Anal. Appl. 1971, 33, 77–81. [Google Scholar]
- Bellman, R. The stability of solutions of linear differential equations. Duke Math. J. 1943, 10, 643–647. [Google Scholar] [CrossRef]
- Medved’, M.; Pospíšil, M. Generalized Laplace transform and tempered Ψ-Caputo fractional derivative. Math. Model. Anal. 2023, 28, 146–162. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Almeida, R.; Malinowska, A.B.; Monteiro, T.T. Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Meth. Appl. Sci. 2018, 41, 336–352. [Google Scholar]
- Erdélyi, A. Higher Transcendental Functions; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1955; Volume 3. [Google Scholar]
- Schneider, W.R. Completely monotone generalized Mittag–Leffler functions. Expo. Math. 1996, 14, 3–16. [Google Scholar]
- Miller, K.S.; Samko, S.G. A note on the complete monotonicity of the generalized Mittag–Leffler function. Real Anal. Exch. 1997, 23, 753–755. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medveď, M.; Pospíšil, M.; Brestovanská, E. Nonlinear Integral Inequalities Involving Tempered Ψ-Hilfer Fractional Integral and Fractional Equations with Tempered Ψ-Caputo Fractional Derivative. Fractal Fract. 2023, 7, 611. https://doi.org/10.3390/fractalfract7080611
Medveď M, Pospíšil M, Brestovanská E. Nonlinear Integral Inequalities Involving Tempered Ψ-Hilfer Fractional Integral and Fractional Equations with Tempered Ψ-Caputo Fractional Derivative. Fractal and Fractional. 2023; 7(8):611. https://doi.org/10.3390/fractalfract7080611
Chicago/Turabian StyleMedveď, Milan, Michal Pospíšil, and Eva Brestovanská. 2023. "Nonlinear Integral Inequalities Involving Tempered Ψ-Hilfer Fractional Integral and Fractional Equations with Tempered Ψ-Caputo Fractional Derivative" Fractal and Fractional 7, no. 8: 611. https://doi.org/10.3390/fractalfract7080611
APA StyleMedveď, M., Pospíšil, M., & Brestovanská, E. (2023). Nonlinear Integral Inequalities Involving Tempered Ψ-Hilfer Fractional Integral and Fractional Equations with Tempered Ψ-Caputo Fractional Derivative. Fractal and Fractional, 7(8), 611. https://doi.org/10.3390/fractalfract7080611