On Novel Mathematical Modeling for Studying a Class of Nonlinear Caputo-Type Fractional-Order Boundary Value Problems Emerging in CGT
Abstract
1. Introduction and Preliminaries
2. Main Results
3. Some Illustrative Examples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonchev, D. Chemical Graph Theory: Introduction and Fundamentals. Chemical Graph Theory; Taylor & Francis: Abingdon, UK, 1991; Available online: https://books.google.de/books?id=X0AG7HhiccoC (accessed on 11 October 2022).
- Cardwell, D.S.L. John Dalton and the progress of science. Phys. Today 1970, 23, 77. [Google Scholar] [CrossRef]
- Dalton, J. A New System of Chemical Philosophy; Cambridge Library Collection—Physical Sciences; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Hein, G.E. Kekulé and the Architecture of Molecules. Adv. Chem. 1966, 61, 1–12. [Google Scholar] [CrossRef]
- Butlerov, A. Ueber Die Verwandtschaft Der Mehraffinen Atome. Z. Für Chem. 1862, 5, 297–304. [Google Scholar]
- Higgins, W. A Comparative View of the Phlogistic and Antiphlogistic Theories, 2nd ed.; Gale ECCO: Farmington Hills, MI, USA, 1791. [Google Scholar]
- Couper, A.S. Sur Une Nouvelle Théorie Chimique. Ann. Chim. Phys. 1858, 53, 488–489. [Google Scholar]
- Cayley, A. On the Theory of the Analytical Forms Called Trees. Mag. J. Sci. 1857, 13, 172–176. [Google Scholar] [CrossRef]
- Sylvester, J.J. On an Application of the New Atomic Theory to the Graphical Representation of the Invariants and Covariants of Binary Quantics with Three Appendices. Am. J. Math. 1878, 1, 64. [Google Scholar] [CrossRef]
- Gutman, I.; Polansky, O.E. Mathematical Concepts in Organic Chemistry; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Academic: Cambridge, UK, 2009. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equation; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Sabatier, J.; Agarwal, O.P.; Machado, J.A.T. Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Agarwal, R.P.; Lakshmikantham, V.; Nieto, J.J. On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. Theor. 2010, 72, 2859–2862. [Google Scholar] [CrossRef]
- Machado, J.A.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. 2011, 16, 1140–1153. [Google Scholar] [CrossRef]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus Models and Numerical Methods; Series on Complexity, Nonlinearity and Chaos; World Scientific: London, UK, 2012. [Google Scholar]
- Qiu, T.; Bai, Z. Existence of positive solution for singular fractional equations. Electr. J. Differ. Equ. 2008, 146, 1–9. [Google Scholar]
- Zhang, S. Existence of positive solutions for some class of nonlinear fractional equation. J. Math. Anal. Appl. 2003, 278, 136–148. [Google Scholar] [CrossRef]
- Hashim, I.; Abdulaziz, O.; Momani, S. Homotopy analysis method for fractional IVPs. Commun. Nonlinear Sci. 2009, 14, 674–684. [Google Scholar] [CrossRef]
- Mdallal, M.A.; Syam, M.I.; Anwar, M.N. A collocation-shooting method for solving fractional boundary value problems. Commun. Nonlinear Sci. 2010, 15, 3814–3822. [Google Scholar] [CrossRef]
- Zhang, S. The existence of a positive solution for nonlinear fractional differential equation. J. Math. Anal. Appl. 2000, 252, 804–812. [Google Scholar] [CrossRef]
- Lumer, G. Connecting of local operators and evolution equations on a network. Lect. Notes Math. 1985, 787, 219–234. [Google Scholar]
- Zavgorodnii, M.G.; Pokornyi, Y.V. On the spectrum of second-order boundary value problems on spatial networks. Usp. Mat. Nauk. 1989, 44, 220–221. [Google Scholar]
- Gordeziani, D.G.; Kupreishvli, M.; Meladze, H.V.; Davitashvili, T.D. On the solution of boundary value problem for differential equations given in graphs. Appl. Math. Lett. 2008, 13, 80–91. [Google Scholar]
- Mehandiratta, V.; Mehra, M.; Leugering, G. Existence and uniqueness results for a nonlinear Caputo fractional boundary value problem on a star graph. J. Math. Anal. Appl. 2019, 477, 1243–1264. [Google Scholar] [CrossRef]
- Graef, J.R.; Kong, L.J.; Wang, M. Existence and uniqueness of solutions for a fractional boundary value problem on a graph. Fract. Calc. Appl. Anal. 2014, 17, 499–510. [Google Scholar] [CrossRef]
- Nicaise, S. Some results on spectral theory over networks applied to nerve impulses transmission. Lect. Notes Math. 1985, 1171, 532–541. [Google Scholar]
- Etemad, S.; Rezapour, S. On the existence of solutions for fractional boundary value problems on the ethane graph. Adv. Differ. Equ. 2020, 276, 2020. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Mohammadi, H.; Rezapour, S. A novel modeling of boundary value problems on the glucose graph. Comm. Nonlinear Sci. Num. Simul. 2021, 100, 105844. [Google Scholar] [CrossRef]
- Rezapour, S.; Deressa, C.T.; Hussain, A.; Etemad, S.; George, R.; Ahmad, B. A theoretical analysis of a fractional multi-dimensional system of boundary value problems on the methylpropane graph via fixed point technique. Mathematics 2022, 10, 568. [Google Scholar] [CrossRef]
- Turab, A.; Sintunavarat, W. The novel existence results of solutions for a nonlinear fractional boundary value problem on the ethane graph. Alex. Eng. J. 2021, 60, 5365–5374. [Google Scholar] [CrossRef]
- Turab, A.; Mitrovic, Z.D.; Savic, A. Existence of solutions for a class of nonlinear boundary value problems on the hexasilinane graph. Adv. Differ. Equ. 2021, 494, 2021. [Google Scholar] [CrossRef]
- Ali, W.; Turab, A.; Nieto, J.J. On the novel existence results of solutions for a class of fractional boundary value problems on the cyclohexane graph. J. Inequal Appl. 2022, 5, 2022. [Google Scholar] [CrossRef]
- Turab, A.; Rosli, N. Study of fractional differential equations emerging in the theory of chemical graphs: A robust approach. Mathematics 2022, 10, 4222. [Google Scholar] [CrossRef]
- Shah, K.; Khan, R.A. Existence and uniqueness results to a coupled system of factional order boundary value problems by topological degree theory. Numer. Funct. Anal. Optim. 2016, 37, 887–899. [Google Scholar] [CrossRef]
- Shah, K.; Ali, A.; Khan, R.A. Degree theory and existence of positive solutions to coupled systems of multipoint boundary value problems. Bound Value Probl. 2016, 43. [Google Scholar] [CrossRef]
- Wang, J.; Shah, K.; Ali, A. Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched coupled evolution equations. Math. Meth. Appl. Sci. 2018, 41, 2392–2402. [Google Scholar] [CrossRef]
- Turab, A.; Sintunavarat, W. A unique solution of the iterative boundary value problem for a second-order differential equation approached by fixed point results. Alex. Eng. J. 2021, 60, 5797–5802. [Google Scholar] [CrossRef]
- Sintunavarat, W.; Turab, A. A unified fixed point approach to study the existence of solutions for a class of fractional boundary value problems arising in a chemical graph theory. PLoS ONE 2022, 17, 2022. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Rezapour, S. On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. 2020, 59, 3019–3027. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Rezapour, S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound Value Probl. 2020, 64. [Google Scholar] [CrossRef]
- Thabet, S.T.; Etemad, S.; Rezapour, S. On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 2021, 45, 496–519. [Google Scholar] [CrossRef]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Matar, M.M.; Abbas, M.I.; Alzabut, J.; Kaabar, M.K.A.; Etemad, S.; Rezapour, S. Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 68. [Google Scholar] [CrossRef]
- Alizadeh, S.; Baleanu, D.; Rezapour, S. Analyzing transient response of the parallel RCL circuit by using the Caputo–Fabrizio fractional derivative. Adv. Differ. Equ. 2020, 55. [Google Scholar] [CrossRef]
- Baleanu, D.; Rezapour, S.; Saberpour, Z. On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. Bound Value Probl. 2019, 79. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Pourrazi, S.; Rezapour, S. On the new fractional hybrid boundary value problems with three-point integral hybrid conditions. Adv. Differ. Equ. 2019, 473. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 1–13. [Google Scholar]
- Losada, J.; Nieto, J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar] [CrossRef]
- Sintunavarat, W.; Turab, A. Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-fractional operator. Math. Comput. Simul. 2022, 198, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Aydogan, M.S.; Baleanu, D.; Mousalou, A.; Rezapour, S. On high order fractional integro-differential equations including the Caputo–Fabrizio derivative. Bound Value Probl. 2018, 90. [Google Scholar] [CrossRef]
- Baleanu, D.; Mohammadi, H.; Rezapour, S. Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative. Adv. Differ. Equ. 2020, 71. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations, an Application Oriented, Exposition Using Differential Operators of Caputo Type; Lecture Notes in Mathematics nr. 2004; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Smart, D.R. Fixed Point Theorems; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turab, A.; Sintunavarat, W.; Ro, J.-S. On Novel Mathematical Modeling for Studying a Class of Nonlinear Caputo-Type Fractional-Order Boundary Value Problems Emerging in CGT. Fractal Fract. 2023, 7, 99. https://doi.org/10.3390/fractalfract7020099
Turab A, Sintunavarat W, Ro J-S. On Novel Mathematical Modeling for Studying a Class of Nonlinear Caputo-Type Fractional-Order Boundary Value Problems Emerging in CGT. Fractal and Fractional. 2023; 7(2):99. https://doi.org/10.3390/fractalfract7020099
Chicago/Turabian StyleTurab, Ali, Wutiphol Sintunavarat, and Jong-Suk Ro. 2023. "On Novel Mathematical Modeling for Studying a Class of Nonlinear Caputo-Type Fractional-Order Boundary Value Problems Emerging in CGT" Fractal and Fractional 7, no. 2: 99. https://doi.org/10.3390/fractalfract7020099
APA StyleTurab, A., Sintunavarat, W., & Ro, J.-S. (2023). On Novel Mathematical Modeling for Studying a Class of Nonlinear Caputo-Type Fractional-Order Boundary Value Problems Emerging in CGT. Fractal and Fractional, 7(2), 99. https://doi.org/10.3390/fractalfract7020099