Asymptotic Behavior on a Linear Self-Attracting Diffusion Driven by Fractional Brownian Motion
Abstract
:1. Introduction
- (I)
- Let and . Define the functionThen, converges to
- (II)
- Let and . Define the processThen, we have
2. Preliminaries
3. Large Time Behaviors
- (1)
- The limit
- (2)
- For all , we have
- (3)
- When , we have
- (4)
- The estimates
- (5)
- For all , we have and
- (6)
- We have
4. The Laws of Large Numbers
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cranston, M.; Le Jan, Y. Self-attracting diffusions: Two case studies. Math. Ann. 1995, 303, 87–93. [Google Scholar] [CrossRef]
- Yan, L.; Sun, Y.; Lu, Y. On the linear fractional self-attracting diffusion. J. Theor. Probab. 2008, 21, 502–516. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Yan, L. The Laws of Large Numbers Associated with the Linear Self-attracting Diffusion Driven by Fractional Brownian Motion and Applications. J. Theor. Probab. 2021. accepted. [Google Scholar] [CrossRef]
- Durrett, R.T.; Rogers, L.C.G. Asymptotic behavior of Brownian polymers. Prob. Theory Rel. Fields. 1992, 92, 337–349. [Google Scholar] [CrossRef]
- Pemantle, R. Phase transition in reinforced random walk and RWRE on trees. Ann. Probab. 1988, 3, 337–349. [Google Scholar] [CrossRef]
- Benaïm, M.; Ledoux, M.; Raimond, O. Self-interacting diffusions. Probab. Theory Relat. Fields. 2002, 122, 1–41. [Google Scholar] [CrossRef]
- Benaïm, M.; Ciotir, I.; Gauthier, C.-E. Self-repelling diffusions via an infinite dimensional approach. Stoch PDE Anal. Comp. 2015, 3, 506–530. [Google Scholar] [CrossRef] [Green Version]
- Chakravarti, N.; Sebastian, K.L. Fractional Brownian motion model for polymers. Chem. Phys. Lett. 1997, 267, 9–13. [Google Scholar] [CrossRef]
- Cherayil, J.; Biswas, P. Path integral description of polymers using fractional Brownian walks. J. Chem. Phys. 1993, 11, 9230–9236. [Google Scholar] [CrossRef]
- Cranston, M.; Mountford, T.S. The strong law of large numbers for a Brownian polymer. Ann. Probab. 1996, 24, 1300–1323. [Google Scholar] [CrossRef]
- Gauthier, C.-E. Self attracting diffusions on a sphere and application to a periodic case. Electron. Commun. Probab. 2016, 21, 1–12. [Google Scholar] [CrossRef]
- Herrmann, S.; Roynette, B. Boundedness and convergence of some self-attracting diffusions. Math. Ann. 2003, 325, 81–96. [Google Scholar] [CrossRef]
- Herrmann, S.; Scheutzow, M. Rate of convergence of some self-attracting diffusions, Nourdin. Stoch. Process. Appl. 2004, 111, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Mountford, T.; Tarrés, P. An asymptotic result for Brownian polymers. Ann. l’IHP Probab. Stat. 2008, 44, 29–46. [Google Scholar] [CrossRef]
- Sun, X.; Yan, L. Asymptotic behavior on the linear self-interacting diffusion driven by α-stable motion. Stochastics 2021, 93, 1186–1208. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, G.; Wang, Q. The local time of the linear self-attracting diffusion driven by weighted fractional Brownian motion. Bull. Korean Math. Soc. 2020, 57, 547–568. [Google Scholar]
- Guo, R.; Gao, H.; Jin, Y.; Yan, L. Large time behavior on the linear self-interacting diffusion driven by sub-fractional Brownian motion II: Self-attracting case. Front. Phys. 2022, 9, 791858. [Google Scholar] [CrossRef]
- Duncan, T.E.; Hu, Y.; Duncan, B.P. Stochastic calculus for fractional Brownian motion. I Theory. SIAM J. Control Optim. 2000, 38, 582–612. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y. Integral transformations and anticipative calculus for fractional Brownian motions. Mem. Am. Math. Soc. 2005, 175, 1–127. [Google Scholar] [CrossRef]
- Mishura, Y.S. Stochastic Calculus for Fractional Brownian Motion and Related Processes; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Wu, X.; Xia, X. Asymptotic Behavior on a Linear Self-Attracting Diffusion Driven by Fractional Brownian Motion. Fractal Fract. 2022, 6, 454. https://doi.org/10.3390/fractalfract6080454
Yan L, Wu X, Xia X. Asymptotic Behavior on a Linear Self-Attracting Diffusion Driven by Fractional Brownian Motion. Fractal and Fractional. 2022; 6(8):454. https://doi.org/10.3390/fractalfract6080454
Chicago/Turabian StyleYan, Litan, Xue Wu, and Xiaoyu Xia. 2022. "Asymptotic Behavior on a Linear Self-Attracting Diffusion Driven by Fractional Brownian Motion" Fractal and Fractional 6, no. 8: 454. https://doi.org/10.3390/fractalfract6080454
APA StyleYan, L., Wu, X., & Xia, X. (2022). Asymptotic Behavior on a Linear Self-Attracting Diffusion Driven by Fractional Brownian Motion. Fractal and Fractional, 6(8), 454. https://doi.org/10.3390/fractalfract6080454