Best Proximity Point Theorems for the Generalized Fuzzy Interpolative Proximal Contractions
Abstract
:1. Introduction
2. Preliminaries
- (1)
- ∗ is commutative and associative;
- (2)
- ∗ is continuous;
- (3)
- for all
- (4)
- , whenever, and for all
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- is continuous,
3. Main Results
-Proximal Contraction of First Kind
- (i)
- for every
- (ii)
- for any
- (iii)
- implies that
- (i)
- Ψ is a non-decreasing function and for any
- (ii)
- is non-empty subset of A such that
- (i)
- Ψ is non-decreasing, if and are convergent sequences such that then .
- (ii)
- is a non-empty subset of A such that
4. Best Proximity Points of Interpolative Proximal Contractions in Non-Archimedean Fuzzy Metric Spaces
4.1. -Interpolative Reich-Rus-Ciric Type Proximal Contraction of the First Kind
- (i)
- Ψ is non-decreasing function and for any
- (ii)
- is non-empty subset of A such that
- (i)
- Ψ is non-decreasing, and are convergent sequences such that then
- (ii)
- is non-empty subset of A such that
4.2. -Interpolative Kannan Type Proximal Contraction of the First Kind
- (i)
- Ψ is non-decreasing function and for any
- (ii)
- is non-empty subset of A such that
- (i)
- Ψ is non-decreasing and and are convergent sequences such that then
- (ii)
- is non-empty subset of A such that
4.3. -Interpolative Hardy Rogers Type Proximal Contraction of the First Kind
- (i)
- Ψ is non-decreasing and for any
- (ii)
- is non-empty subset of A such that
- (i)
- Ψ is non-decreasing, the sequences and are convergent such that then
- (ii)
- is a non-empty subset of A such that
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basha, S.S. Extensions of Banach’s contraction principle. Numer. Funct. Anal. Optim. 2010, 31, 569–576. [Google Scholar] [CrossRef]
- Basha, S.S. Best proximity point theorems in the frameworks of fairly and proximally complete spaces. J. Fixed Point Theory 2017, 19, 1939–1951. [Google Scholar] [CrossRef]
- Basha, S.S. Best proximity point theorems for some classes of contractions. Acta Math. Hungar. 2018, 156, 336–360. [Google Scholar] [CrossRef]
- Espinola, R.; Kosuru, G.S.R.; Veeramani, P. Pythagorean property and best proximity point theorems. J. Optim. Theory Appl. 2015, 164, 534–550. [Google Scholar] [CrossRef]
- Suzuki, T.; Kikkawa, M.; Vetro, C. The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 2009, 71, 2918–2926. [Google Scholar] [CrossRef]
- Zadeh, L.A. Information and control. Fuzzy Sets 1965, 8, 338–353. [Google Scholar]
- Schweizer, B.; Sklar, A. Statistical metric spaces. Pacific J. Math. 1960, 10, 314–334. [Google Scholar] [CrossRef] [Green Version]
- Kramosil, I.; Jiří, M. Fuzzy metrics and statistical metric spaces. Kybernetika 1975, 11, 336–344. [Google Scholar]
- Gregory, V.; Sapena, A. On fixed point theorems in fuzzy metric spaces. Fuzzy Set Syst. 2002, 125, 245–253. [Google Scholar] [CrossRef]
- Paknazar, M. Non-Archimedean fuzzy metric spaces and Best proximity point theorems. Sahand Commun. Math. Anal. 2018, 9, 85–112. [Google Scholar]
- Vetro, C.; Salimi, P. Best proximity point results in non-Archimedean fuzzy metric spaces. Fuzzy Inf. Eng. 2013, 5, 417–429. [Google Scholar] [CrossRef]
- De Hierro, A.F.R.L.; Andreea, F.; Karapinar, E.; Naseer, S. Proinov-Type Fixed-Point Results in Non-Archimedean Fuzzy Metric Spaces. Mathematics 2021, 9, 1594. [Google Scholar] [CrossRef]
- Karapinar, E. Revisiting the Kannan type contractions via interpolation. Adv. Theory Nonlinear Anal. Appl. 2018, 2, 85–87. [Google Scholar] [CrossRef] [Green Version]
- Altun, I.; Taşdemir, A. On Best Proximity Points of Interpolative Proximal Contractions. Quaestiones Math. 2020, 44, 1233–1241. [Google Scholar] [CrossRef]
- Proinov, P.D. Fixed point theorems for generalized contractive mappings in metric spaces. J. Fixed Point Theory Appl. 2020, 22, 1–27. [Google Scholar] [CrossRef]
- Martínez, B.; Fernández, J.; Marichal, E.; Herrera, F. Fuzzy modelling of nonlinear systems using on line clustering methods. IFAC Proc. Vol. 2007, 40, 256–261. [Google Scholar] [CrossRef]
- Beg, I.; Mani, G.; Gnanaprakasam, A.J. Best proximity point of generalized F-proximal non-self contractions. J. Fixed Point Theory Appl. 2021, 23, 49. [Google Scholar] [CrossRef]
- Gautam, P.; Mishra, V.N.; Ali, R.; Verma, S. Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space. AIMS Math. 2020, 6, 1727–1742. [Google Scholar] [CrossRef]
- Karapinar, E.; Agarwal, R.P. Interpolative Rus-Reich-Ćirić type contractions via simulation functions. An. Univ. Ovidius Constanta-Ser. Mat. 2019, 27, 137–152. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Aydi, H.; Mitrović, Z.D. On interpolative Boyd-Wong and Matkowski type contractions. TWMS J. Pure Appl. Math. 2020, 11, 204–212. [Google Scholar]
- Khan, M.S.; Singh, Y.M.; Karapinar, E. On the Interpolative (φ, E)-Type Z-Contraction. U.P.B. Sci. Bull. Ser. A 2021, 83, 25–38. [Google Scholar]
- Nazam, M.; Aydi, H.; Hussain, A. Generalized Interpolative Contractions and an Application. J. Math. 2021, 2021, 6461477. [Google Scholar] [CrossRef]
- Samanta, S.; Sarkar, B. Representation of competitions by generalized fuzzy graphs. Int. J. Comput. Syst. 2018, 11, 1005–1015. [Google Scholar] [CrossRef] [Green Version]
- Al-Masarwah, A.; Ahma, A.G. m-Polar (α, β)-Fuzzy Ideals in BCK/BCI-Algebras. Symmetry 2019, 11, 44. [Google Scholar] [CrossRef] [Green Version]
Authors | Year | Contributions |
---|---|---|
Calogero Vetro and Peyman Salimi [11] | 2013 | Best proximity points in fuzzy metric space |
Erdal Karapinar [13] | 2018 | Interpolative contraction |
Ishak Alton and Aysenur Tasdemir [14] | 2020 | Interpolative proximal contraction |
Petko D. Proinov [15] | 2020 | Generalized contraction mappings |
Khalil et al. | This paper | Generalized fuzzy interpolative proximal contraction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, K.; Lashin, M.M.A.; Nazam, M.; Al Sulami, H.H.; Hussain, A.; Arshad, M. Best Proximity Point Theorems for the Generalized Fuzzy Interpolative Proximal Contractions. Fractal Fract. 2022, 6, 455. https://doi.org/10.3390/fractalfract6080455
Javed K, Lashin MMA, Nazam M, Al Sulami HH, Hussain A, Arshad M. Best Proximity Point Theorems for the Generalized Fuzzy Interpolative Proximal Contractions. Fractal and Fractional. 2022; 6(8):455. https://doi.org/10.3390/fractalfract6080455
Chicago/Turabian StyleJaved, Khalil, Maha M. A. Lashin, Muhammad Nazam, Hamed H. Al Sulami, Aftab Hussain, and Muhammad Arshad. 2022. "Best Proximity Point Theorems for the Generalized Fuzzy Interpolative Proximal Contractions" Fractal and Fractional 6, no. 8: 455. https://doi.org/10.3390/fractalfract6080455
APA StyleJaved, K., Lashin, M. M. A., Nazam, M., Al Sulami, H. H., Hussain, A., & Arshad, M. (2022). Best Proximity Point Theorems for the Generalized Fuzzy Interpolative Proximal Contractions. Fractal and Fractional, 6(8), 455. https://doi.org/10.3390/fractalfract6080455