On Certain Integrals Related to Saran’s Hypergeometric Function FK
Abstract
1. Motivation and Objectives
2. Some Preliminaries
2.1. Properties of Saran’s -Function
2.2. Fractional Integration by Parts for Function of Several Variables
2.3. Hypergeometric Function of Several Variables
3. The First Integral
- (1)
- The method of using fractional integration by parts is one way of proving Theorem 1. We can, however, adopt a direct approach to establish the integral identity of Theorem 1. In fact, if we first express the function as a triple series, interchange the order of integration and summation and then carry out elementary evaluations, we will arrive at the desired result.
- (2)
- Letwhere , then the Hadamard product (also called the convolution) of and is defined byIt is easy to verify thatIn addition, since and the polydisc are complete Reinhardt domains of holomorphy, it implies therefore from [34] (p. 22, Observation 5.1) that the region of convergence of iswhere .
4. The Second Integral
- (1)
- It may be noticed that the functions involved in the integrand of (33) cannot be directly expressed in terms of simpler functions. For the known reducible cases when the -function reduces to , and , the interested reader may refer to Refs. [6] (p. 4, equation (4.7)), [35] (p. 220, Equations (3.6) and (3.7)), [2] (p. 2, Equations (5) and (7)) and [36] (p. 58, Equation (2.2)).
- (2)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saran, S. Transformations of certain hypergeometric functions of three variables. Acta Math. 1955, 93, 293–312. [Google Scholar] [CrossRef]
- Luo, M.-J.; Raina, R.K. On certain results related to the hypergeometric function FK. J. Math. Anal. Appl. 2021, 504, 125439. [Google Scholar] [CrossRef]
- Krantz, S.G. Function Theory of Several Complex Variables; AMS Chelsea Publishing: Providence, RI, USA, 2001. [Google Scholar]
- Abiodun, R.F.A.; Sharma, B.L. Expansion of certain hypergeometric functions of three variables. Kyungpook Math. J. 1983, 23, 69–84. [Google Scholar]
- Deshpande, V.L. Inequalities for the triple hypergeometric function FK. Jñānābha 1978, 9, 89–93. [Google Scholar]
- Exton, H. A note on the Humbert functions. Jñānābha 1973, 3, 1–5. [Google Scholar]
- Exton, H. Multiple Hypergeometric Functions and Applications; John Wiley and Sons: New York, NY, USA, 1976. [Google Scholar]
- Pandey, R.C. On certain hypergeometric transformations. J. Math. Mech. 1963, 12, 113–118. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press: New York, NY, USA; Ellis Horwood Limited: Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Hutchinson, T.P. Compound gamma bivariate distributions. Metrika 1981, 28, 263–271. [Google Scholar] [CrossRef]
- Kol, B.; Shir, R. The propagator seagull: General evaluation of a two loop diagram. J. High Energy Phys. 2019, 2019, 83. [Google Scholar] [CrossRef]
- Hutchinson, T.P. Four applications of a bivariate Pareto distribution. Biom. J. 1979, 21, 553–563. [Google Scholar] [CrossRef]
- Lee, P.A. The correlated bivariate inverted beta distribution. Biom. J. 1981, 23, 693–703. [Google Scholar] [CrossRef]
- Mazars, M. Statistical physics of the freely jointed chain. Phys. Rev. E 1996, 53, 6297–6319. [Google Scholar] [CrossRef]
- Mazars, M. Canonical partition functions of freely jointed chains. J. Phys. A Math. Gen. 1998, 31, 1949–1964. [Google Scholar] [CrossRef]
- Ong, S.H. Computation of bivariate gamma and inverted beta distribution functions. J. Statist. Comput. Simul. 1995, 51, 153–163. [Google Scholar] [CrossRef]
- Erdélyi, A. Transformation of hypergeometric integrals by means of fractional integration by parts. Q. J. Math. 1939, 10, 176–189. [Google Scholar] [CrossRef]
- Luo, M.-J.; Raina, R.K. Erdélyi-type integrals for generalized hypergeometric functions with integral parameter differences. Integral Transforms Spec. Funct. 2017, 28, 476–487. [Google Scholar] [CrossRef]
- Koepf, W. Hypergeometric Identities. In Hypergeometric Summation, 2nd ed.; Springer: London, UK, 2014; pp. 11–33. [Google Scholar]
- Carlson, B.C. Special Functions of Applied Mathematics; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Joshi, C.M.; Vyas, Y. Extensions of certain classical integrals of Erdélyi for Gauss hypergeometric functions. J. Comput. Appl. Math. 2003, 160, 125–138. [Google Scholar] [CrossRef][Green Version]
- Raina, R.K. Solution of Abel-type integral equation involving the Appell hypergeometric function. Integral Transforms Spec. Funct. 2010, 21, 515–522. [Google Scholar] [CrossRef]
- Blaschke, P. Asymptotic analysis via calculus of hypergeometric functions. J. Math. Anal. Appl. 2016, 433, 1790–1820. [Google Scholar] [CrossRef]
- Manocha, H.L. Integral expressions for Appell’s functions F1 and F2. Riv. Mat. Univ. Parma 1967, 2, 235–242. [Google Scholar]
- Manocha, H.L.; Sharma, H.R. New integral expressions for functions of three variables. Bull. Math. Soc. Sci. Math. Roum. 1969, 13, 231–244. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press: New York, NY, USA; Ellis Horwood Limited: Chichester, UK; John Wiley and Sons: Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Chandel, R.C.S. Fractional integration and integral representations of certain generalized hypergeometric functions of several variables. Jñānābha 1971, 1, 45–56. [Google Scholar]
- Koschmieder, L. Integrale mit hypergeometrischen Integranden. Acta Math. 1947, 79, 241–254. [Google Scholar] [CrossRef]
- Koschmieder, L. Verallgemeinerte Ableitungen und hypergeometrische Funktionen. Monatsh. Math. 1949, 53, 169–183. [Google Scholar] [CrossRef]
- Mittal, K.C. Integral representation of Appell’s functions. Kyungpook Math. J. 1977, 17, 101–107. [Google Scholar]
- Srivastava, H.M.; Daoust, M.C. A note on the convergence of Kampé de Fériet double hypergeometric series. Math. Nachr. 1972, 53, 151–159. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 8th ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Zając, S. The Hadamard multiplication theorem in several complex variables. Complex Var. Elliptic Equ. 2017, 62, 1–26. [Google Scholar] [CrossRef]
- Lal, C.; Saran, S. Bilinear generating functions of Lauricella and Saran’s function. Glas. Mat. 1973, 8, 215–223. [Google Scholar]
- Singh, O.V.; Bhatt, R.C. Certain reducible cases of triple hypergeometric functions. Jñānābha 1990, 20, 57–60. [Google Scholar]
- Pérez-Marco, R. Local monodromy formula of Hadamard products. arXiv 2020, arXiv:2011.10497v1. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, M.; Xu, M.; Raina, R.K. On Certain Integrals Related to Saran’s Hypergeometric Function FK. Fractal Fract. 2022, 6, 155. https://doi.org/10.3390/fractalfract6030155
Luo M, Xu M, Raina RK. On Certain Integrals Related to Saran’s Hypergeometric Function FK. Fractal and Fractional. 2022; 6(3):155. https://doi.org/10.3390/fractalfract6030155
Chicago/Turabian StyleLuo, Minjie, Minghui Xu, and Ravinder Krishna Raina. 2022. "On Certain Integrals Related to Saran’s Hypergeometric Function FK" Fractal and Fractional 6, no. 3: 155. https://doi.org/10.3390/fractalfract6030155
APA StyleLuo, M., Xu, M., & Raina, R. K. (2022). On Certain Integrals Related to Saran’s Hypergeometric Function FK. Fractal and Fractional, 6(3), 155. https://doi.org/10.3390/fractalfract6030155

