The Influence of Noise on the Solutions of Fractional Stochastic Bogoyavlenskii Equation
Abstract
:1. Introduction
2. Preliminaries
- is a constant,
3. The Wave Equation
4. Analytical Solutions of SFSBE
4.1. The -Expansion Method
4.2. Sine–Cosine Method
5. Impact of Multiplicative Brownian Motion
- The surface shrank as the order of the fractional operator decreases,
- At the surface is not completely flat and has some fluctuation,
- After minor transit patterns, the surface becomes considerably flatter when noise is included and its strength is increased .
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuste, S.B.; Acedo, L.; Lindenberg, K. Reaction front in an A + B → C reaction–subdiffusion process. Phys. Rev. E 2004, 69, 036126. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, W.W.; Iqbal, N. Impact of the same degenerate additive noise on a coupled system of fractional space diffusion equations. Fractals 2022, 30, 2240033. [Google Scholar] [CrossRef]
- Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. The fractional-order governing equation of Lévy motion. Water Resour. Res. 2000, 36, 1413–1423. [Google Scholar] [CrossRef]
- Yuste, S.B.; Lindenberg, K. Subdiffusion-limited A + A reactions. Phys. Rev. Lett. 2001, 87, 118301. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, N.; Wu, R.; Mohammed, W.W. Pattern formation induced by fractional cross-diffusion in a 3-species food chain model with harvesting. Math. Comput. Simul. 2021, 188, 102–119. [Google Scholar] [CrossRef]
- Barkai, E.; Metzler, R.; Klafter, J. From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. 2000, 61, 132–138. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Random walk models for space–fractional diffusion processes. Fract. Calc. Appl. Anal. 1998, 1, 167–191. [Google Scholar]
- Shakeel, M.; Ul-Hassan, Q.M.; Ahmad, J. Applications of the novel (G′/G)-expansion method to the time fractional simplified modified Camassa–Holm (MCH) equation. Abstr. Appl. Anal. 2014, 2014, 601961. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.L.; Li, X.Z.; Zhang, J.L. The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 2008, 372, 417–423. [Google Scholar] [CrossRef]
- Yomba, E. The modified extended Fan sub-equation method and its application to the (2+1)-dimensional Broer-Kaup-Kupershmidt equation. Chaos Soliton Fractal 2006, 27, 187–196. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, T.C. Further improved extended Fan sub-equation method and new exact solutions of the (2+1)-dimensional Broer–Kaup–Kupershmidt equations. Appl. Math. Comput. 2006, 182, 1651–1660. [Google Scholar] [CrossRef]
- Malfliet, W.; Hereman, W. The tanh method. I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 1996, 54, 563–568. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The tanh method for traveling wave solutions of nonlinear equations. Appl. Math. Comput. 2004, 154, 713–723. [Google Scholar] [CrossRef]
- Wazwaz, A.M. A sine-cosine method for handling nonlinear wave equations. Math. Comput. Model. 2004, 40, 499–508. [Google Scholar] [CrossRef]
- Mohammed, W.W. Approximate solution of the Kuramoto-Shivashinsky equation on an unbounded domain. Chin. Ann. Math. Ser. 2018, 39, 145–162. [Google Scholar] [CrossRef]
- Mohammed, W.W. Modulation Equation for the Stochastic Swift–Hohenberg Equation with Cubic and Quintic Nonlinearities on the Real Line. Mathematics 2019, 7, 1217. [Google Scholar] [CrossRef] [Green Version]
- Fan, E.; Zhang, J. Applications of the Jacobi elliptic function method to special-type nonlinear equations. Phys. Lett. A 2002, 305, 383–392. [Google Scholar] [CrossRef]
- Yan, Z.L. Abunbant families of Jacobi elliptic function solutions of the-dimensional integrable Davey-Stewartson-type equation via a new method. Chaos Solitons Fractals 2003, 18, 299–309. [Google Scholar] [CrossRef]
- Zhang, J.L.; Wang, M.L.; Wang, Y.M.; Fang, Z.D. The improved F-expansion method and its applications. Phys. Lett. A 2006, 350, 103–109. [Google Scholar] [CrossRef]
- Khan, K.; Akbar, M.A. Application of exp(-φ(η))-expansion Method to find the Exact Solutions of Modified Benjamin-Bona-Mahony Equation. World Appl. Sci. J. 2013, 24, 1373–1377. [Google Scholar]
- Khan, K.; Akbar, M.A. The exp(-φ(η))-expansion method for finding travelling wave solutions of Vakhnenko-Parkes equation. Int. J. Dyn. Syst. Differ. Equ. 2014, 5, 72–83. [Google Scholar] [CrossRef]
- Hafez, M.G.; Ali, M.Y.; Chowdury, M.K.H.; Kauser, M.A. Application of the exp(-φ(η)) expansion method for solving nonlinear TRLW and Gardner equations. Int. J. Math. Comput. 2016, 27, 44–56. [Google Scholar]
- Capasso, V.; Morale, D. Stochastic modelling of tumour-induced angiogenesis. J. Math. Biol. 2009, 58, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, W.W.; Blomker, D. Fast diffusion limit for reaction-diffusion systems with stochastic Neumann boundary conditions. SIAM J. Math. Anal. 2016, 48, 3547–3578. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Lou, Y.; des Christo, P.D. Dynamic output feedback covariance control of stochastic dissipative partial differential equations. Chem. Eng. Sci. 2008, 63, 4531–4542. [Google Scholar] [CrossRef]
- Prevôt, C.; Rockner, M. A Concise Course on Stochastic Partial Di Erential Equations; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Mohammed, W.W.; Alesemi, M.; Albosaily, S.; Iqbal, N.; El-Morshedy, M. The Exact Solutions of Stochastic Fractional-Space Kuramoto-Sivashinsky Equation by using (G′/G)-expansion method. Mathematics 2021, 9, 2712. [Google Scholar] [CrossRef]
- Al-Askar, F.M.; Mohammed, W.W.; Albalahi, A.M.; El-Morshedy, M. The Impact of the Wiener process on the analytical solutions of the stochastic (2+1)-dimensional breaking soliton equation by using tanh–coth method. Mathematics 2022, 10, 817. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Bazighifan, O.; Al-Sawalha, M.M.; Almatroud, A.O.; Aly, E.S. The Influence of Noise on the Exact Solutions of the Stochastic Fractional-Space Chiral Nonlinear Schrodinger equation. Fractal Fract. 2021, 5, 262. [Google Scholar] [CrossRef]
- Albosaily, S.; Mohammed, W.W.; Hamza, A.E.; El-Morshedy, M.; Ahmad, H. The exact solutions of the stochastic fractional space Allen–Cahn equation. Open Phys. 2022, 20, 23–29. [Google Scholar] [CrossRef]
- Bogoyavlenskii, O.I. Overturning solitons in two-dimensional integrable equations, (Russian) Usp. Mat. Nauk 1990, 45, 17–77. [Google Scholar]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Alam, M.d.N.; Tunc, C. An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator-prey system. Alex. Eng. J. 2016, 55, 1855–1865. [Google Scholar] [CrossRef] [Green Version]
- Khater, M.M.A.; Seadawy, A.R.; Lu, D. Elliptic and solitary wave solutions for Bogoyavlenskii equations system, couple Boiti-Leon-Pempinelli equations system and Time-fractional Cahn-Allen equation. Results Phys. 2017, 7, 2325–2333. [Google Scholar] [CrossRef]
- Malik, A.; Ch, F.; Kumar, H.; Mishra, S.C. Exact solutions of the Bogoyavlenskii equation using the multiple (G′/G)-expansion method. Comput. Math. Appl. 2012, 64, 2850–2859. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Shen, M. On exact solutions of the Bogoyavlenskii equation. Pramana 2006, 67, 449–456. [Google Scholar] [CrossRef]
- Yu, J.; Sun, Y. Modified method of simplest equation and its applications to the Bogoyavlenskii equation. Comput. Math. Appl. 2016, 72, 1943–1955. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Amer, Y.A. The modified simple equation method for solving nonlinear diffusive predator–prey system and Bogoyavlenskii equations. Int. J. Phys. Sci. 2015, 10, 133–141. [Google Scholar]
- Zahran, E.H.M.; Khater, M.M.A. Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Model. 2016, 40, 1769–1775. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Al-Nowehy, A. Solitons and other solutions to the nonlinear Bogoyavlenskii equations using the generalized Riccati equation mapping method. Opt. Quantum Electron. 2017, 49, 1–23. [Google Scholar] [CrossRef]
- Najafi, M.; Arbabi, S.; Najafi, M. New Exact Solutions of (2 + 1)-Dimensional Bogoyavlenskii Equation by the sine-cosine Method. Int. J. Basic Appl. Sci. 2012, 1, 490–497. [Google Scholar]
- Hammouch, Z.; Mekkaoui, T.; Agarwal, P. Optical solitons for the Calogero-Bogoyavlenskii-Schiff equation in (2+1) dimensions with time-fractional conformable derivative. Eur. Phys. J. Plus 2018, 133, 248. [Google Scholar] [CrossRef]
- Nisar, K.S.; Ilhan, O.A.; Manafian, J.; Shahriari, M.; Soybas, D. Analytical behavior of the fractional Bogoyavlenskii equations with conformable derivative using two distinct reliable methods. Results Phys. 2021, 22, 103975. [Google Scholar] [CrossRef]
- Eslami, M.; Khodadad, F.S.; Nazari, F.; Rezazadeh, H. The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative. Opt. Quantum Electron. 2017, 49, 1–18. [Google Scholar] [CrossRef]
- Alam, M.d.N.; Tunc, C. The new solitary wave structures for the (2 + 1)-dimensional time-fractional Schrodinger equation and the space-time nonlinear conformable fractional Bogoyavlenskii equations. Alex. Eng. J. 2020, 59, 2221–2232. [Google Scholar] [CrossRef]
- Li, C.; Zhao, M. Analytical solutions of the (2 + 1)-dimensional space–time fractional Bogoyavlenskii’s breaking soliton equation. Appl. Math. Lett. 2018, 84, 13–18. [Google Scholar] [CrossRef]
- Liu, X.Z.; Yu, J.; Lou, Z.M. New Backlund transformations of the (2 + 1)-dimensional Bogoyavlenskii equation via localization of residual symmetries. Comput. Math. Appl. 2018, 76, 1669–1679. [Google Scholar] [CrossRef]
- Feng, Q. A new approach for seeking coeficient function solutions of conformable fractional partial differential equations based on the Jacobi elliptic equation. Chin. J. Phys. 2018, 56, 2817–2828. [Google Scholar] [CrossRef]
- Yokus, A.; Durur, H.; Ahmad, H.; Thounthong, P.; Zhang, Y.F. Construction of exact traveling wave solutions of the Bogoyavlenskii equation by (G′/G, 1/G)-expansion and (1/G′)-expansion techniques. Results Phys. 2020, 19, 103409. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Freihat, A.; Khalil, H.; Momani, S.; Khan, R.A. Numerical multistep approach for solving fractional partial differential equations. Int. J. Comput. Meth. 2017, 14, 1750029. [Google Scholar] [CrossRef]
- Calin, O. An Informal Introduction to Stochastic Calculus with Applications; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2015. [Google Scholar]
- Kloeden, P.E.; Platen, E. Numerical Solution of Stochastic Differential Equations; Springer: New York, NY, USA, 1995. [Google Scholar]
- Higham, D.J. An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations. SIAM Rev. 2001, 43, 525–546. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Askar, F.M.; Mohammed, W.W.; Albalahi, A.M.; El-Morshedy, M. The Influence of Noise on the Solutions of Fractional Stochastic Bogoyavlenskii Equation. Fractal Fract. 2022, 6, 156. https://doi.org/10.3390/fractalfract6030156
Al-Askar FM, Mohammed WW, Albalahi AM, El-Morshedy M. The Influence of Noise on the Solutions of Fractional Stochastic Bogoyavlenskii Equation. Fractal and Fractional. 2022; 6(3):156. https://doi.org/10.3390/fractalfract6030156
Chicago/Turabian StyleAl-Askar, Farah M., Wael W. Mohammed, Abeer M. Albalahi, and Mahmoud El-Morshedy. 2022. "The Influence of Noise on the Solutions of Fractional Stochastic Bogoyavlenskii Equation" Fractal and Fractional 6, no. 3: 156. https://doi.org/10.3390/fractalfract6030156
APA StyleAl-Askar, F. M., Mohammed, W. W., Albalahi, A. M., & El-Morshedy, M. (2022). The Influence of Noise on the Solutions of Fractional Stochastic Bogoyavlenskii Equation. Fractal and Fractional, 6(3), 156. https://doi.org/10.3390/fractalfract6030156