Fejér–Hadamard Type Inequalities for (α, h-m)-p-Convex Functions via Extended Generalized Fractional Integrals
Abstract
:1. Introduction
- (i)
- For , we recover the fractional integral operators defined by Andrić et al. in [34].
- (ii)
- For and , we recover the fractional integral operators defined by Salim-Faraj in [17].
- (iii)
- For and , we recover the fractional integral operators defined by Rahman et al. in [16].
- (iv)
- For , and , we recover the fractional integral operators defined by Srivastava-Tomovski in [19].
- (v)
- For , and , we recover the fractional integral operators defined by Prabhakar in [15].
- (vi)
- For and , we recover the Riemann–Liouville fractional integrals.
2. Fejér–Hadamard Type Inequalities
- (i)
- If , then
- (ii)
- If , then
- (i)
- If , then
- (ii)
- If , then
2.1. Results for (h-m)-p-Convex Functions
- (i)
- If , then
- (ii)
- If , then
- (i)
- If , then
- (ii)
- If , then
2.2. Results for (,m)-p-Convex Functions
- (i)
- If , then
- (ii)
- If , then
- (i)
- If , then
- (ii)
- If , then
2.3. Results for (,h)-p-Convex Functions
- (i)
- If , then
- (ii)
- If , then
- (i)
- If , then
- (ii)
- If , then
2.4. Results for (s-m)-p-Convex Functions
- (i)
- If , then
- (ii)
- If , then
- (i)
- If , then
- (ii)
- If , then
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comp. Appl. Math. 2019, 353, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Butt, S.I.; Bakula, M.K.; Pečarić, J. Steffensen-Grüss inequality. J. Math. Inequal. 2021, 15, 799–810. [Google Scholar] [CrossRef]
- Chen, F.; Wu, S. Hermite-Hadamard type inequalities for harmonically convex functions. J. Appl. Math. 2014, 2014, 386806. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.B.; Shi, R. On the (p,h)-convex function and some integral inequalities. J. Inequal. Appl. 2014, 2014, 45. [Google Scholar] [CrossRef] [Green Version]
- Kunt, M.; İscan, İ.; Yazi, N.; Gozutok, U. On new inequalities of Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals. Springer Plus. 2016, 5, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities. J. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- İscan, İ.; Turhan, S.; Maden, S. Hermite-Hadamard and simpson-like type inequalities for differentiable p-quasi-convex functions. Filomat 2017, 31, 5945–5953. [Google Scholar] [CrossRef] [Green Version]
- Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef] [Green Version]
- İscan, İ. Ostrowski type inequalities for p-convex functions. New Trends Math. Sci. 2016, 4, 140–150. [Google Scholar] [CrossRef]
- Mihesan, V.G. A Generalization of the Convexity; Seminar on Functional Equations, Approx. and Convex.: Cluj-Napoca, Romania, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Ahmad, B.; Henderson, J.; Luca, R. Boundary Value Problems for Fractional Differential Equations and Systems; World Scientific: Singapore, 2021. [Google Scholar]
- Tarasov, V.E. Fractional Dynamical Systems. In Fractional Dynamics. Nonlinear Physical Science; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Amsalu, H.; Suthar, D.L. Generalized fractional integral operators involving Mittag-Leffler function. Abstr. Appl. Anal. 2018, 2018, 7034124. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Rahman, G.; Baleanu, D.; Qurashi, M.A.; Purohit, S.D.; Mubeen, S.; Arshad, M. The extended Mittag-Leffler function via fractional calculus. J. Nonlinear Sci. Appl. 2017, 10, 4244–4253. [Google Scholar] [CrossRef]
- Salim, T.O.; Faraj, A.W. A generalization of Mittag-Leffler function and integral operator associated with integral calculus. J. Frac. Calc. Appl. 2012, 3, 1–13. [Google Scholar]
- Sachan, D.S.; Jaloree, S.; Choi, J. Certain recurrence relations of two parametric Mittag-Leffler function and their application in fractional calculus. Fractal Fract. 2021, 5, 215. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tomovski, Z. Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernal. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar]
- Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2017, 17, 1049–1059. [Google Scholar] [CrossRef]
- Farid, G. A treatment of the Hadamard inequality due to m-convexity via generalized fractional integrals. J. Fract. Calc. Appl. 2018, 9, 8–14. [Google Scholar]
- Butt, S.I.; Yousaf, S.; Akdemir, A.O.; Dokuyucu, M.A. New Hadamard-type integral inequalities via a general form of fractional integral operators. Chaos Solitons Fractals 2021, 148, 111025. [Google Scholar] [CrossRef]
- İscan, İ. Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals. Stud. Univ. Babes-Bolyai Math. 2015, 60, 355–366. [Google Scholar]
- İscan, İ.; Wu, S. Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar]
- Jung, C.Y.; Yussouf, M.; Chu, Y.M.; Farid, G.; Kang, S.M. Generalized fractional Hadamard and Fejér-Hadamard inequalities for generalized harmonically convex functions. J. Math. 2020, 2020, 8245324. [Google Scholar] [CrossRef]
- Qiang, X.; Farid, G.; Yussouf, M.; Khan, K.A.; Rehman, A.U. New generalized fractional versions of Hadamard and Fejér inequalities for harmonically convex functions. J. Inequal. Appl. 2020, 2020, 191. [Google Scholar] [CrossRef]
- Rao, Y.; Yussouf, M.; Farid, G.; Pečarić, J.; Tlili, I. Further generalizations of Hadamard and Fejér-Hadamard inequalities and error estimations. Adv. Diff. Equ. 2020, 2020, 421. [Google Scholar] [CrossRef]
- Yang, X.; Farid, G.; Nazeer, W.; Yussouf, M.; Chu, Y.M.; Dong, C. Fractional generalized Hadamard and the Fejér-Hadamard type inequalities for m-convex functions. AIMS Math. 2020, 5, 6325–6340. [Google Scholar] [CrossRef]
- Yussouf, M.; Farid, G.; Khan, K.A.; Jung, C.Y. Hadamard and Fejér inequalities for further generalized fractional integrals involving Mittag-Leffler Functions. J. Math. 2021, 2021, 13. [Google Scholar] [CrossRef]
- Jia, W.; Yussouf, M.; Farid, G.; Khan, K.A. Hadamard and Fejér-Hadamard inequalities for (α, h-m)-p-convex functions via Riemann-Liouville fractional integrals. Math. Probl. Eng. 2021, 2021, 12. [Google Scholar] [CrossRef]
- Toader, G.H. Some generalizations of the convexity. Proc. Colloq. Approx. Optim. Cluj-Napoca 1985, 329–338. [Google Scholar]
- Fejér, L. Überdie Fourierreihen II. Math Naturwiss Anz Ungar Akad Wiss. 1906, 24, 369–390. [Google Scholar]
- Farid, G. A unified integral operator and further its consequences. Open J. Math. Anal. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Andrić, M.; Farid, G.; Pečarić, J. A further extension of Mittag-Leffler function. Fract. Calc. Appl. Anal. 2018, 21, 1377–1395. [Google Scholar] [CrossRef]
- Hadamard, J. Etude sur les proprietes des fonctions entieres e.t en particulier dune fonction consideree par Riemann. J. Math. Pure Appl. 1893, 58, 171–215. [Google Scholar]
- Hermite, C. Sur deux limites d’une intgrale dfinie. Mathesis 1883, 3, 82. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farid, G.; Yussouf, M.; Nonlaopon, K. Fejér–Hadamard Type Inequalities for (α, h-m)-p-Convex Functions via Extended Generalized Fractional Integrals. Fractal Fract. 2021, 5, 253. https://doi.org/10.3390/fractalfract5040253
Farid G, Yussouf M, Nonlaopon K. Fejér–Hadamard Type Inequalities for (α, h-m)-p-Convex Functions via Extended Generalized Fractional Integrals. Fractal and Fractional. 2021; 5(4):253. https://doi.org/10.3390/fractalfract5040253
Chicago/Turabian StyleFarid, Ghulam, Muhammad Yussouf, and Kamsing Nonlaopon. 2021. "Fejér–Hadamard Type Inequalities for (α, h-m)-p-Convex Functions via Extended Generalized Fractional Integrals" Fractal and Fractional 5, no. 4: 253. https://doi.org/10.3390/fractalfract5040253
APA StyleFarid, G., Yussouf, M., & Nonlaopon, K. (2021). Fejér–Hadamard Type Inequalities for (α, h-m)-p-Convex Functions via Extended Generalized Fractional Integrals. Fractal and Fractional, 5(4), 253. https://doi.org/10.3390/fractalfract5040253