Random Times for Markov Processes with Killing
Abstract
:1. Introduction
2. Markov Processes with Killing Potentials
3. Random Times Processes
- For a.a. , for all ;
- For a.a. , ;
- The function is increasing and satisfies
- , -a.s.;
- has the same law of for all ;
- if denotes the filtration generated by , i.e., , then is independent of for all
- is -a.s. right continuous with left limits;
- is -a.s. an increasing function.
4. Asymptotic Behavior of Particular Families
4.1. The Case ,
4.2. The Case ,
5. Applications to Parabolic Anderson Models
5.1. Anderson Problem
5.2. Annealed Asymptotic
6. Applications to Non-Local Schrödinger Operators
6.1. Ground State Problem
- If the mortality , then , exponentially fast and uniformly in x.
- On the other hand, for , this density grows exponentially fast to infinity.
- The ground state of exists.
- , , .
- For the density , the following asymptotic formula holds:
6.2. Generalized Anderson Problem
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gikhman, I.I.; Skorokhod, A.V. The Theory of Stochastics Processes II; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Bochner, S. Subordination of non-Gaussian stochastic processes. Proc. Natl. Acad. Sci. USA 1962, 4, 19–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kochubei, A.; Kondratiev, Y.G.; da Silva, J.L. From random times to fractional kinetics. Interdiscip. Stud. Complex Syst. 2020, 16, 5–32. [Google Scholar] [CrossRef]
- Kochubei, A.; Kondratiev, Y.G.; da Silva, J.L. Random Time Change and Related Evolution Equations. Time Asymptotic Behavior. Stoch. Dyn. 2020, 4, 20500344. [Google Scholar] [CrossRef] [Green Version]
- Magdziarz, M.; Schilling, R.L. Asymptotic properties of Brownian motion delayed by inverse subordinators. Proc. Am. Math. Soc. 2015, 143, 4485–4501. [Google Scholar] [CrossRef] [Green Version]
- Bingham, N.H. Limit theorems for occupation times of Markov processes. Z. Wahrsch. Verw. Gebiete 1971, 17, 1–22. [Google Scholar] [CrossRef]
- Feller, W. An Introduction to Probability Theory and Its Applications, 2nd ed.; John Wiley & Sons Inc.: New York, NY, USA, 1971; Volume II. [Google Scholar]
- Bertoin, J. Lévy Processes, Volume 121. In Cambridge Tracts in Mathematics; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Applebaum, D. Lévy Processes and Stochastic Calculus; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Piryatinska, A.; Saichev, A.; Woyczynski, W. Models of anomalous diffusion: The subdiffusive case. Phys. A Stat. Mech. Appl. 2005, 349, 375–420. [Google Scholar] [CrossRef]
- Gorenflo, R.; Luchko, Y.; Mainardi, F. Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 1999, 2, 383–414. [Google Scholar]
- Mainardi, F.; Mura, A.; Pagnini, G. The M-Wright function in time-fractional diffusion processes: A tutorial survey. Int. J. Differential Equ. 2010, 2010, 104505. [Google Scholar] [CrossRef] [Green Version]
- Baeumer, B.; Meerschaert, M.M. Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 2001, 4, 481–500. [Google Scholar]
- Meerschaert, M.M.; Scheffler, H.P. Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab. 2004, 41, 623–638. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.C.; Sato, R.; Shaw, S.Y. Ratio Tauberian theorems for positive functions and sequences in Banach lattices. Positivity 2007, 11, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Mimica, A. Heat kernel estimates for subordinate Brownian motions. Proc. Lond. Math. Soc. 2016, 113, 627–648. [Google Scholar] [CrossRef] [Green Version]
- Toaldo, B. Convolution-type derivatives, hitting-times of subordinators and time-changed C0-semigroups. Potential Anal. 2015, 42, 115–140. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.Q. Time fractional equations and probabilistic representation. Chaos Solitons Fractals 2017, 102, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Pastur, L.; Figotin, A. Spectra of Random and Almost-Periodic Operators; Number 297 in Grundlehren der Mathematischen Wissenschaften; Springers: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Albeverio, S.; Kondratiev, Y.G.; Röckner, M. Analysis and Geometry on Configuration Spaces. J. Funct. Anal. 1998, 154, 444–500. [Google Scholar] [CrossRef] [Green Version]
- Pastur, L.A. Behavior of certain Wiener integrals as t→∞ and the density of states of Schrödinger equations with random potential. Teoret. Mat. Fiz. 1977, 32, 88–95. [Google Scholar] [CrossRef]
- Donsker, M.D.; Varadhan, S.R.S. Asymptotics for the Wiener sausage. Comm. Pure Appl. Math. 1975, 28, 525–565. [Google Scholar] [CrossRef]
- Kondratiev, Y.G.; Skorokhod, A.V. On Contact Processes in Continuum. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2006, 9, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Kondratiev, Y.G.; Kutoviy, O.; Pirogov, S. Correlation functions and invariant measures in continuous contact model. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2008, 11, 231–258. [Google Scholar] [CrossRef]
- Kondratiev, Y.G.; Piatnitski, A.; Zhizhina, E. Asymptotics of fundamental solutions for time fractional equations with convolution kernels. Fract. Calc. Appl. Anal. 2020, 23, 1161–1187. Available online: https://arxiv.org/abs/1907.08677v1 (accessed on 1 December 2021). [CrossRef]
- Kondratiev, Y.; Molchanov, S.; Pirogov, S.; Zhizhina, E. On ground state of non local Schrödinger operators. Appl. Anal. 2016, 96, 1390–1400. Available online: https://arxiv.org/abs/1601.01136v2 (accessed on 1 December 2021). [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondratiev, Y.G.; da Silva, J.L. Random Times for Markov Processes with Killing. Fractal Fract. 2021, 5, 254. https://doi.org/10.3390/fractalfract5040254
Kondratiev YG, da Silva JL. Random Times for Markov Processes with Killing. Fractal and Fractional. 2021; 5(4):254. https://doi.org/10.3390/fractalfract5040254
Chicago/Turabian StyleKondratiev, Yuri G., and José Luís da Silva. 2021. "Random Times for Markov Processes with Killing" Fractal and Fractional 5, no. 4: 254. https://doi.org/10.3390/fractalfract5040254
APA StyleKondratiev, Y. G., & da Silva, J. L. (2021). Random Times for Markov Processes with Killing. Fractal and Fractional, 5(4), 254. https://doi.org/10.3390/fractalfract5040254