Weighted Midpoint Hermite-Hadamard-Fejér Type Inequalities in Fractional Calculus for Harmonically Convex Functions
Abstract
:1. Introduction
- (i)
- Equation (12) can be restated in the following form: If with , then the weighted fractional integrals reduce to the classical Riemann–Liouville fractional integrals.
- (ii)
2. Auxiliary Results
- (i)
- for each , we have
- (ii)
- For , we have
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hermite, C. Sur deux limites d’une intégrale dé finie. Mathesis 1883, 3, 82. [Google Scholar]
- Hadamard, J. Étude sur les propriétés des fonctions entères et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Zafar, F.; Kalsoom, H.; Hussain, N. Some inequalities of Hermite–Hadamard type for n-times differentiable-geometrically convex functions. J. Nonlinear Sci. Appl. 2015, 8, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Hussain, S. Some Hermite-Hadamard type integral inequalities whose n-times differentiable functions are s-logarithmically convex functions. Punjab Univ. J. Math. 2019, 2019, 65–75. [Google Scholar]
- Kalsoom, H.; Hussain, S.; Rashid, S. Hermite-Hadamard type integral inequalities for functions whose mixed partial derivatives are co-ordinated preinvex. Punjab Univ. J. Math. 2020, 52, 63–76. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. New inequaities of Hermite-Hadamard’s type. Res. Rep. Collect. 2009, 12, 7. [Google Scholar]
- Mohammed, P.O.; Sarikaya, M.Z. On generalized fractional integral inequalities for twice differentiable convex functions. J. Comput. Appl. Math. 2020, 372, 112740. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Akkurt, A.; Budak, H.; Yildirim, M.E.; Yildirim, H. Hermite-Hadamard’s inequalities for conformable fractional integrals. Konuralp J. Math. 2020, 8, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.S.; Rashid, S.; Jarad, F.; Kalsoom, H.; Chu, Y.M. New estimates considering the generalized proportional Hadamard fractional integral operators. Adv. Differ. Equ. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Rashid, S.; Jarad, F.; Kalsoom, H.; Chu, Y.M. On Pólya–Szegö and Cebyšev type inequalities via generalized k-fractional integrals. Adv. Differ. Equ. 2020, 2020, 125. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Aydi, H.; Kashuri, A.; Hamed, Y.S.; Abualnaja, K.M. Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels. Symmetry 2021, 13, 550. [Google Scholar] [CrossRef]
- Rashid, S.; Kalsoom, H.; Hammouch, Z.; Ashraf, R.; Baleanu, D.; Chu, Y.M. New multi-parametrized estimates having pth-order differentiability in fractional calculus for predominating h-convex functions in Hilbert space. Symmetry 2020, 12, 222. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Hammouch, Z.; Kalsoom, H.; Ashraf, R.; Chu, Y.M. New investigation on the generalized K-fractional integral operators. Front. Phys. 2020, 8, 25. [Google Scholar] [CrossRef]
- Rashid, S.; Jarad, F.; Noor, M.A.; Kalsoom, H.; Chu, Y.M. Inequalities by means of generalized proportional fractional integral operators with respect to another function. Mathematics 2019, 7, 1225. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.M.; Rashid, S.; Jarad, F.; Noor, M.A.; Kalsoom, H. More new results on integral inequalities for generalized K-fractional conformable Integral operators. Discret. Contin. Dyn. Syst. Ser. S 2021, 14, 2119. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Sarikaya, M.Z.; Yildirim, H. On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 2017, 17, 1049–1059. [Google Scholar] [CrossRef]
- Macdonald, I.G. Symmetric Functions and Orthogonal Polynomials; American Mathematical Society: New York, NY, USA, 1997. [Google Scholar]
- Fejér, L. Uber die Fourierreihen, II. J Math. Naturwiss Anz. Ungar. Akad. Wiss Hung. 1906, 24, 369–390. [Google Scholar]
- İşcan, İ. Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals. Stud. Univ. Babes Bolyai Math. 2015, 60, 355–366. [Google Scholar]
- İşcan, İ. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some Feér Type Inequalities for Harmonically-convex Functions with Applications to Special Means. Available online: http://rgmia.org/papers/v18/v18a24.pdf (accessed on 15 March 2015).
- İşcan, İ. On generalization of different type integral inequalities for s-convex functions via fractional integrals. Math. Sci. Appl. E Notes 2014, 2, 55–67. [Google Scholar] [CrossRef] [Green Version]
- İşcan, İ.; Kunt, M.; Yazici, N. Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals. New Trends Math. Sci. 2016, 3, 239–253. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Shah, K. On the weighted fractional operators of a function with respect to another function. Fractals 2020, 28, 2040011. [Google Scholar] [CrossRef]
- Osler, T.J. The fractional derivative of a composite function. SIAM J. Math. Anal. 1970, 1, 288–293. [Google Scholar] [CrossRef]
- Vanterler, J.; Sousa, C.; de Oliveira, E.C. On the Ψ–Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalsoom, H.; Vivas-Cortez, M.; Amer Latif, M.; Ahmad, H. Weighted Midpoint Hermite-Hadamard-Fejér Type Inequalities in Fractional Calculus for Harmonically Convex Functions. Fractal Fract. 2021, 5, 252. https://doi.org/10.3390/fractalfract5040252
Kalsoom H, Vivas-Cortez M, Amer Latif M, Ahmad H. Weighted Midpoint Hermite-Hadamard-Fejér Type Inequalities in Fractional Calculus for Harmonically Convex Functions. Fractal and Fractional. 2021; 5(4):252. https://doi.org/10.3390/fractalfract5040252
Chicago/Turabian StyleKalsoom, Humaira, Miguel Vivas-Cortez, Muhammad Amer Latif, and Hijaz Ahmad. 2021. "Weighted Midpoint Hermite-Hadamard-Fejér Type Inequalities in Fractional Calculus for Harmonically Convex Functions" Fractal and Fractional 5, no. 4: 252. https://doi.org/10.3390/fractalfract5040252
APA StyleKalsoom, H., Vivas-Cortez, M., Amer Latif, M., & Ahmad, H. (2021). Weighted Midpoint Hermite-Hadamard-Fejér Type Inequalities in Fractional Calculus for Harmonically Convex Functions. Fractal and Fractional, 5(4), 252. https://doi.org/10.3390/fractalfract5040252