Next Article in Journal
Fejér–Hadamard Type Inequalities for (α, h-m)-p-Convex Functions via Extended Generalized Fractional Integrals
Next Article in Special Issue
Solutions of General Fractional-Order Differential Equations by Using the Spectral Tau Method
Previous Article in Journal
Analysis of Impulsive Boundary Value Pantograph Problems via Caputo Proportional Fractional Derivative under Mittag–Leffler Functions
Previous Article in Special Issue
LR-Preinvex Interval-Valued Functions and Riemann–Liouville Fractional Integral Inequalities
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Weighted Midpoint Hermite-Hadamard-Fejér Type Inequalities in Fractional Calculus for Harmonically Convex Functions

1
Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
2
Escuela de Ciencias Físicas y Matemáticas, Facultad de Ciencias Naturales y Exactas Pontificia, Universidad Católica del Ecuador, Sede Quito 17-01-2184, Ecuador
3
Department of Basic Sciences, Deanship of Preparatory Year, King Faisal University, Hofuf 31982, Saudi Arabia
4
Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186 Roma, Italy
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2021, 5(4), 252; https://doi.org/10.3390/fractalfract5040252
Submission received: 8 September 2021 / Revised: 17 October 2021 / Accepted: 29 October 2021 / Published: 2 December 2021

Abstract

:
In this paper, we establish a new version of Hermite-Hadamard-Fejér type inequality for harmonically convex functions in the form of weighted fractional integral. Secondly, an integral identity and some weighted midpoint fractional Hermite-Hadamard-Fejér type integral inequalities for harmonically convex functions by involving a positive weighted symmetric functions have been obtained. As shown, all of the resulting inequalities generalize several well-known inequalities, including classical and Riemann–Liouville fractional integral inequalities.

1. Introduction

The theory of convex functions is an essential tool in various fields of pure and applied sciences. There is also a close connection between the theory of convex functions, the theory of inequalities, and fractional differential equations. At the same time, fractional differential equations are one of the most studied fields of mathematics due to their application in the real world. Many inequalities are proved for convex functions but, the most known from the related literature is Hermite-Hadamard inequality.
A function F : [ θ 1 , θ 2 ] R R on an interval of real line is said to be convex, if for all θ 1 , θ 2 I and τ [ 0 , 1 ] , then
F ( τ θ 1 + ( 1 τ ) θ 2 ) τ F ( θ 1 ) + ( 1 τ ) F ( θ 2 ) .
The Hermite-Hadamard integral inequality is a well-known inequality in the subject of convex functional analysis. It has an interesting geometric representation with numerous important applications. The extraordinary inequality states that if F : I R is a convex mapping on the interval I of real numbers and θ 1 , θ 2 I with θ 1 < θ 2 , then
F θ 1 + θ 2 2 1 θ 2 θ 1 θ 1 θ 2 F ( τ ) d τ F ( θ 1 ) + F ( θ 2 ) 2 .
Inequality (2) was introduced by C. Hermite [1] and investigated by J. Hadamard [2] in 1893. Both inequalities hold in the inverted direction if F is concave. Many mathematicians have paid considerable attention to Hermite-Hadamard inequality due to its quality and integrity in mathematical inequality. For significant developments, modifications, and consequences regarding the Hermite-Hadamard uniqueness property and general convex function definitions, for essential details, the interested reader would like to refer to [3,4,5,6,7] and references therein. Fractional calculus and applications have application areas in many different fields such as physics, chemistry and engineering, and mathematics. Applying arithmetic in classical analysis in the fractional analysis is very important in obtaining more realistic results in solving many problems. Many real dynamical systems are better characterized using non-integer order dynamic models based on fractional computation. While integer orders are a model that is not suitable for nature in classical analysis, fractional computation in which arbitrary orders are examined enables us to obtain more realistic approaches. Regarding some papers dealing with fractional integral inequalities via different types of fractional integral operators, we refer readers to [8,9,10,11,12,13,14,15,16].
Furthermore, Sarikaya et al. [17] generalized and reformed the Hermite-Hadamard integral inequality (2) in forms of Riemann–Liouville fractional integrals in 2013.
F θ 1 + θ 2 2 Γ ( v + 1 ) 2 ( θ 2 θ 1 ) v I θ 1 + v F ( θ 2 ) + I θ 2 v F ( θ 1 ) F ( θ 1 ) + F ( θ 2 ) 2 ,
where the function F : [ θ 1 , θ 2 ] R with 0 θ 1 < θ 2 and F L 1 [ θ 1 , θ 2 ] . Therefore, I θ 1 + v is left-sided Riemann–Liouville fractional integrals and I θ 2 v is the right-sided Riemann–Liouville fractional integrals with order v > 0 , defined by [18]
I θ 1 + v F ( τ ) = 1 Γ ( v ) θ 1 τ ( τ κ ) v 1 F ( κ ) d κ , τ > θ 1 , I θ 2 v F ( τ ) = 1 Γ ( v ) τ θ 2 ( κ τ ) v 1 F ( κ ) d κ , τ < θ 2 .
respectively. Here, Γ ( v ) is the Gamma function and I θ 1 + 0 F ( τ ) = I θ 2 0 F ( τ ) = F ( τ ) .
Due to the use of the interval’s ends θ 1 , θ 2 , the inequality (3) is called endpoint Hermite-Hadamard inequality.
The midpoint Hermite-Hadamard inequality was discovered by Sarikaya and Yildirim [19] after expending the essential area of the integral inequalities in (2) and (3)
F θ 1 + θ 2 2 2 v 1 Γ ( v + 1 ) ( θ 2 θ 1 ) v I θ 1 + θ 2 2 + v F ( θ 2 ) + I θ 1 + θ 2 2 v F ( θ 1 ) F ( θ 1 ) + F ( θ 2 ) 2 ,
where the function F : [ θ 1 , θ 2 ] R is convex and continuous. In [20], I. G. Macdonald gave the following definition.
Definition 1.
Suppose that a function G : [ θ 1 , θ 2 ] [ 0 , ) and it is symmetric with respect to θ 1 + θ 2 2 if
G ( θ 1 + θ 2 κ ) = G ( κ ) , for all κ [ θ 1 , θ 2 ] .
Fejér proposed the following generalization of Hadamard inequality in 1906 (see [21]):
Theorem 1.
Let F : [ θ 1 , θ 2 ] R be a convex function such that θ 1 < θ 2 . Furthermore, let G : [ θ 1 , θ 2 ] R be a positive, integrable and symmetric to θ 1 + θ 2 2 . Then the following inequality holds:
F θ 1 + θ 2 2 θ 1 θ 2 G ( τ ) d τ θ 1 θ 2 F ( τ ) G ( τ ) d τ F ( θ 1 ) + F ( θ 2 ) 2 θ 1 θ 2 G ( τ ) d τ .
The inequality (6) is well-known as the Fejér-Hadamard inequality in the literature. In the concept of Riemann–Liouville fractional integrals, İ. İşcan [22] discovered the endpoint version of (6), which is also the extension of (3). As a result, the final inequalities are shown as follows:
F θ 1 + θ 2 2 I θ 1 + v F ( θ 2 ) + I θ 2 v ( F ) ( θ 1 ) I θ 1 + v ( F G ) ( θ 2 ) + I θ 2 v ( F G ) ( θ 1 ) F ( θ 1 ) + F ( θ 2 ) 2 I θ 1 + v F ( θ 2 ) + I θ 2 v F ( θ 1 ) ,
where F is convex and continuous, G is symmetric and belongs to L 1 [ θ 1 , θ 2 ] , (see Definition 1).
In [23], İ. İşcan gave definition of harmonically convex functions and established following Hermite-Hadamard type inequality for harmonically convex functions as follows:
Definition 2.
Let I R { 0 } be an interval of nonzero real numbers. Then a function F : I R is said to be harmonically convex if
F θ 1 θ 2 θ 1 τ + ( 1 τ ) θ 2 τ F ( θ 2 ) + ( 1 τ ) F ( θ 1 ) ,
holds for all θ 1 , θ 2 I and τ [ 0 , 1 ] .
In [24], Latif et al. gave the following definition.
Definition 3.
A function F : [ θ 1 , θ 2 ] R { 0 } R is said to be harmonically symmetric with respect to 2 θ 1 θ 2 θ 1 + θ 2 , if
F 1 κ = F 1 1 θ 1 + 1 θ 2 κ ,
κ [ θ 1 , θ 2 ] .
İşcan et al. published Hermite-inequality Hadamard’s in fractional integral type for harmonically convex functions In [22], as follows:
Theorem 2.
Let F : I R { 0 } R be a harmonically convex function and θ 1 , θ 2 I with θ 1 < θ 2 . If F L 1 [ θ 1 , θ 2 ] , then the following inequalities holds:
F 2 θ 1 θ 2 θ 1 + θ 2 θ 1 θ 2 θ 2 θ 1 θ 1 θ 2 F ( τ ) τ 2 d τ F ( θ 1 ) + F ( θ 2 ) 2 .
Hermite-Hadamard inequalities for harmonically convex functions were introduced in fractional integral form in [25] as follows:
Theorem 3.
Consider a function F : I ( 0 , ) R such that F L 1 [ θ 1 , θ 2 ] , where θ 1 , θ 2 I with θ 1 < θ 2 . If F is a harmonically convex function on [ θ 1 , θ 2 ] , then
F 2 θ 1 θ 2 θ 1 + θ 2 Γ ( v + 1 ) 2 θ 1 θ 2 θ 1 + θ 2 v I 1 θ 1 v F H 1 θ 2 I 1 θ 2 + v F H 1 θ 1 F ( θ 1 ) + F ( θ 2 ) 2 ,
with v > 0 and H ( κ ) = 1 κ where κ = 1 θ 2 , 1 θ 1 .
For harmonically convex functions, in [17] Chan et al. stated the Hermite-Hadamard-Fejér inequality as follows:
Theorem 4.
Suppose that harmonically convex function F : I R { 0 } R . If F L 1 [ θ 1 , θ 2 ] and G : [ θ 1 , θ 2 ] R { 0 } R is positive, an integrable, and harmonically symmetric with respect to 2 θ 1 θ 2 θ 1 + θ 2 , then
F 2 θ 1 θ 2 θ 1 + θ 2 θ 1 θ 2 G ( τ ) τ 2 d τ θ 1 θ 2 F ( τ ) G ( τ ) τ 2 d τ F ( θ 1 ) + F ( θ 2 ) 2 θ 1 θ 2 G ( τ ) τ 2 d τ ,
and θ 1 , θ 2 I with θ 1 < θ 2 .
In [26], İşcan et al. proved Hermite-Hadamard-Fejér type inequalities for harmonically convex functions through fractional integrals:
Theorem 5.
Let F : [ θ 1 , θ 2 ] R be a harmonically convex function and θ 1 , θ 2 I with θ 1 < θ 2 . If F L 1 [ θ 1 , θ 2 ] and G : [ θ 1 , θ 2 ] R is positive, an integrable, and harmonically symmetric with respect to 2 θ 1 θ 2 θ 1 + θ 2 , then
F 2 θ 1 θ 2 θ 1 + θ 2 I 1 θ 1 v G H 1 θ 2 I 1 θ 2 + v G H 1 θ 1 I 1 θ 1 v F G H 1 θ 2 I 1 θ 2 + v F G H 1 θ 1 F ( θ 1 ) + F ( θ 2 ) 2 I 1 θ 1 v G H 1 θ 2 I 1 θ 2 + v G H 1 θ 1 ,
with v > 0 and H ( κ ) = 1 κ , κ 1 θ 2 , 1 θ 1 .
In [27], Fahad et al. presented weighted fractional integrals as follows:
Definition 4.
Let ( θ 1 , θ 2 ) R and σ ( τ ) be an increasing positive and monotone function on the interval ( θ 1 , θ 2 ] with a continuous derivative σ ( τ ) on the open interval ( θ 1 , θ 2 ) . Then the weighted fractional integrals on the left and right sides of a function F according to another function σ ( τ ) on [ θ 1 , θ 2 ] are shown as below:
w I θ 1 + v , σ F τ = [ w ( τ ) ] 1 Γ ( v ) θ 1 τ σ ( κ ) σ ( τ ) σ ( κ ) v 1 F ( κ ) w ( κ ) d κ , w I θ 2 v , σ F τ = [ w ( τ ) ] 1 Γ ( v ) τ θ 2 σ ( κ ) σ ( κ ) σ ( τ ) v 1 F ( κ ) w ( κ ) d κ ,
with v > 0 and for [ w ( τ ) ] 1 : = 1 w ( τ ) with w ( τ ) 0 .
Remark 1.
Using Definition 4, we have
 (i)
Equation (12) can be restated in the following form: If σ ( τ ) = τ with w ( τ ) = 1 , then the weighted fractional integrals reduce to the classical Riemann–Liouville fractional integrals.
 (ii)
Putting w ( τ ) = 1 , so we obtain the fractional integrals of F with regard to the function σ ( τ ) , for more details see [28,29]:
I θ 1 + v , σ F τ = 1 Γ ( v ) θ 1 τ σ ( κ ) σ ( τ ) σ ( κ ) v 1 F ( κ ) w ( κ ) d κ , I θ 2 v , σ F τ = 1 Γ ( v ) τ θ 2 σ ( κ ) σ ( κ ) σ ( τ ) v 1 F ( κ ) w ( κ ) d κ ,
with v > 0 .
We recall the following special functions which are known as Beta and hypergeometric function
β ( γ 1 , γ 2 ) = Γ ( γ 1 ) Γ ( γ 2 ) Γ ( γ 1 + γ 2 ) = 0 1 τ γ 1 1 ( 1 τ ) γ 2 1 d τ , γ 1 , γ 2 > 0 .
2 F 1 ( γ 1 , γ 2 ; γ 3 , ζ ) = 1 β ( γ 2 , γ 3 γ 2 ) 0 1 τ γ 2 1 ( 1 τ ) γ 3 γ 2 1 ( 1 ζ τ ) γ 1 d τ , γ 3 > γ 2 > 0 , | ζ | < 1 ,
respectively, (see [18]).
The polygamma function of order m is a meromorphic function on the complex numbers C defined as the ( m + 1 ) th derivative of the logarithm of the gamma function:
ψ m ζ : = d m d ζ m ψ ζ = d m + 1 d ζ m + 1 ln Γ ζ .
Thus
ψ 0 ζ = ψ ζ = Γ ζ Γ ζ
holds where ψ ζ is the digamma function and Γ ζ is the gamma function.
When m > 0 and Re > 0 , the integral representation of polygamma is given by
ψ m ζ = 1 m + 1 0 τ m e ζ τ 1 e τ d τ = 0 1 τ ζ 1 1 τ ln τ m d τ .
The generalized hypergeometric function is given by a hypergeometric series, i.e., a series for which the ratio of successive terms can be written as
c k + 1 c k = ( k + θ 1 ) ( k + θ 2 ) . . . ( k + θ p ) ( k + π 1 ) ( k + π 2 ) . . . ( k + π q ) ( k + 1 ) .
The resulting generalized hypergeometric function is written
k = 0 c k x k = p F q θ 1 , θ 2 . . . , θ p π 1 , π 2 . . . , π p ; x = p F q θ 1 , θ 2 . . . , θ p ; π 1 , π 2 . . . , π p ; x = k = 0 θ 1 k θ 2 k . . . θ p k x k π 1 k π 2 k . . . π p k k ! ,
where x C , p q , θ i , π j C , π j 0 , 1 , 2 , , i = 1 , 2 , , p , j = 1 , 2 , , q and θ k is the Pochhammer symbol or rising factorial defined by
θ k = Γ θ + k Γ θ = θ θ + 1 θ + 2 . . . θ + k + 1 .
In this article, we will use fractional weighted integrals (12) with nonnegative symmetric weighted functions in the kernel, necessary and auxiliary lemmas to study Hermite-Hadamard-Fejér type inequalities in Section 2. We shall prove our key results in Section 3, which will include new midpoint fractional Hermite-Hadamard-Fejér type integral inequalities as well as some related results. The conclusion will be presented in Section 4.

2. Auxiliary Results

Lemma 1.
If F : [ θ 1 , θ 2 ] R is integrable and harmonically symmetric with respect to 2 θ 1 θ 2 θ 1 + θ 2 , then
 (i)
for each κ [ 0 , 1 ] , we have
w 2 θ 1 θ 2 κ θ 2 + 2 κ θ 1 = w 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 .
 (ii)
For v > 0 , we have
I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 = σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 = 1 2 I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 + σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 ,
and H ( τ ) = 1 τ , τ 1 θ 2 , 1 θ 1 .
Proof.
(i)
Suppose that τ = 2 θ 1 θ 2 κ θ 2 + 2 κ θ 1 with τ θ 1 , θ 2 and κ [ 0 , 1 ] such that 1 1 θ 1 + 1 θ 2 1 τ = 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 . Then, using the hypotheses and Definition 3, we can obtain (14).
(ii)
w has symmetry characteristic, then
w H σ κ = w 1 σ κ = w 1 1 θ 1 + 1 θ 2 σ ( κ ) , κ σ 1 1 θ 2 , σ 1 1 θ 1 .
Hence, from above and setting 1 σ ( τ ) = 1 1 θ 1 + 1 θ 2 σ ( κ ) , it follows that
σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 = 1 Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ ( τ ) 1 θ 2 v 1 w H σ ( τ ) σ ( τ ) d τ = 1 Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ ( τ ) 1 θ 2 v 1 w 1 1 θ 1 + 1 θ 2 σ ( τ ) σ ( τ ) d τ = 1 Γ ( v ) σ 1 1 θ 1 σ 1 θ 1 + θ 2 2 θ 1 θ 2 1 θ 1 σ ( κ ) v 1 w 1 σ ( κ ) σ ( κ ) d κ = 1 Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 1 θ 1 σ ( τ ) v 1 w H σ ( κ ) σ ( κ ) d κ = I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 ,
which brings the needed equality (15).
Theorem 6.
Let 0 < θ 1 < θ 2 , let F : [ θ 1 , θ 2 ] R be an L 1 harmonically convex function and w : [ θ 1 , θ 2 ] R is nonnegative, an integrable, and symmetric weighted function with respect to 2 θ 1 θ 2 θ 1 + θ 2 . If σ is is an increasing and positive function from [ θ 1 , θ 2 ) onto itself such that its derivative σ ( τ ) is continuous on ( θ 1 , θ 2 ) for v > 0 , then
F 2 θ 1 θ 2 θ 1 + θ 2 I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 + σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ × σ 1 1 θ 2 w 1 θ 1 w H σ I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ F H σ σ 1 1 θ 1 + w 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 I w H σ v , σ F H σ σ 1 1 θ 2 F θ 1 + F θ 2 2 × I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 + σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 .
Proof. 
Since F is a harmonically convex function on [ θ 1 , θ 2 ] , we write
F 2 π 1 π 2 π 1 + π 2 F ( π 1 ) + F ( π 2 ) 2 , for all π 1 , π 2 [ θ 1 , θ 2 ] .
Therefore, for π 1 = 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 and π 2 = 2 θ 1 θ 2 κ θ 2 + 2 κ θ 1 , κ [ 0 , 1 ] , it follows
2 F 2 θ 1 θ 2 θ 1 + θ 2 F 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 + F 2 θ 1 θ 2 κ θ 2 + 2 κ θ 1 .
Multiplying both sides of (17) by κ v 1 w 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 and integrating the resulting inequality with respect to κ over [ 0 , 1 ] , we obtain
2 F 2 θ 1 θ 2 θ 1 + θ 2 0 1 κ v 1 w 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 d κ 0 1 κ v 1 F 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 w 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 d κ + 0 1 κ v 1 F 2 θ 1 θ 2 κ θ 2 + 2 κ θ 1 w 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 d κ .
From the left-hand side of the inequality in (18), we use (15) to obtain
1 2 2 θ 1 θ 2 θ 2 θ 1 v Γ ( v ) I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 + σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 = 2 θ 1 θ 2 θ 2 θ 1 v Γ ( v ) I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 = 2 θ 1 θ 2 θ 2 θ 1 v σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 1 θ 1 σ ( τ ) v 1 w H σ ( τ ) σ ( τ ) d τ = σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 2 θ 1 θ 2 1 θ 1 σ ( τ ) θ 2 θ 1 v 1 w H σ ( τ ) σ ( τ ) 2 θ 1 θ 2 d τ θ 2 θ 1 = 0 1 κ v 1 w 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 d κ .
It follows that
2 F 2 θ 1 θ 2 θ 1 + θ 2 0 1 κ v 1 w 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 d κ = 2 θ 1 θ 2 θ 2 θ 1 v Γ ( v ) F 2 θ 1 θ 2 θ 1 + θ 2 × I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 + σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 .
We can demonstrate that by calculating the weighted fractional operators,
w 1 θ 1 I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 + w 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 = w 1 θ 1 w H σ 1 σ 1 1 θ 1 Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 1 θ 1 σ ( τ ) v 1 F H σ ( τ ) w H σ ( τ ) σ ( τ ) d τ + w 1 θ 2 w H σ 1 σ 1 1 θ 2 Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ ( τ ) 1 θ 2 v 1 F H σ ( τ ) w H σ ( τ ) σ ( τ ) d τ = θ 2 θ 1 v ( 2 θ 1 θ 2 ) v Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 2 θ 1 θ 2 1 θ 1 σ ( τ ) θ 2 θ 1 v 1 F H σ ( τ ) w H σ ( τ ) σ ( τ ) 2 θ 1 θ 2 d τ θ 2 θ 1 + θ 2 θ 1 v ( 2 θ 1 θ 2 ) v Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 2 θ 1 θ 2 σ ( τ ) 1 θ 2 θ 2 θ 1 v 1 F H σ ( τ ) w H σ ( τ ) σ ( τ ) 2 θ 1 θ 2 d τ θ 2 θ 1 ,
so,
w H σ σ 1 1 y 1 = 1 w H σ σ 1 1 y = 1 w ( y ) , for y = 1 θ 1 , 1 θ 2 .
Setting γ 1 = 2 θ 1 θ 2 1 θ 1 σ ( τ ) θ 2 θ 1 and γ 2 = 2 θ 1 θ 2 σ ( τ ) 1 θ 2 θ 2 θ 1 , one can deduce that
w 1 θ 1 I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 + w 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 = θ 2 θ 1 v ( 2 θ 1 θ 2 ) v Γ ( v ) 0 1 γ 1 v 1 F 2 θ 1 θ 2 γ 1 θ 1 + 2 γ 1 θ 2 w 2 θ 1 θ 2 γ 1 θ 1 + 2 γ 1 θ 2 d γ 1 + 0 1 γ 2 v 1 F 2 θ 1 θ 2 γ 2 θ 2 + 2 γ 2 θ 1 w 2 θ 1 θ 2 γ 2 θ 2 + 2 γ 2 θ 1 d γ 2 = θ 2 θ 1 v ( 2 θ 1 θ 2 ) v Γ ( v ) 0 1 κ v 1 F 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 w 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 d κ + 0 1 κ v 1 F 2 θ 1 θ 2 κ θ 2 + 2 κ θ 1 w 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 d κ .
As a consequence,
0 1 κ v 1 F 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 w 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 d κ + 0 1 κ v 1 F 2 θ 1 θ 2 κ θ 2 + 2 κ θ 1 w 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 d κ = ( 2 θ 1 θ 2 ) v Γ ( v ) θ 2 θ 1 v w 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 I w H σ v , σ F H σ σ 1 1 θ 2 + w 1 θ 1 w H σ I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ F H σ σ 1 1 θ 1 .
When we use (19) and (20) in (18), we obtain the following result
F 2 θ 1 θ 2 θ 1 + θ 2 I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 + σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 w 1 θ 1 I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 + w 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 .
As a result, left inequality of (18) has been proven.
The second inequality of (18) can be proved using the harmonically convex function of F .
F 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 + F 2 θ 1 θ 2 κ θ 2 + 2 κ θ 1 F θ 1 + F θ 2 .
Multiplying both sides of (23) by κ v 1 w 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 and we obtain by integrating the resulting inequality in terms of κ on [ 0 , 1 ] .
0 1 κ v 1 F 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 w 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 d κ + 0 1 κ v 1 F 2 θ 1 θ 2 κ θ 2 + 2 κ θ 1 w 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 d κ F θ 1 + F θ 2 0 1 κ v 1 w 2 θ 1 θ 2 κ θ 1 + 2 κ θ 2 d κ .
Then, using (14) and (20) in (24), we get
w 1 θ 1 w H σ I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ F H σ σ 1 1 θ 1 + w 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 I w H σ v , σ F H σ σ 1 1 θ 2 F θ 1 + F θ 2 2 I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 + σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 .
This ends our proof. □
Remark 2.
We can derive the following special results from Theorem 6:
 (i)
If σ ( τ ) = τ , then inequality (16) yields
F 2 θ 1 θ 2 θ 1 + θ 2 I θ 1 + θ 2 2 θ 1 θ 2 + v w H 1 θ 1 + θ 1 + θ 2 2 θ 1 θ 2 I v w H 1 θ 2 w 1 θ 1 w H I θ 1 + θ 2 2 θ 1 θ 2 + v F H 1 θ 1 + w 1 θ 2 θ 1 + θ 2 2 θ 1 θ 2 I w H v F H 1 θ 2 F θ 1 + F θ 2 2 I θ 1 + θ 2 2 θ 1 θ 2 + v w H 1 θ 1 + θ 1 + θ 2 2 θ 1 θ 2 I v w H 1 θ 2 .
where
w I θ 1 + v F τ = [ w ( τ ) ] 1 Γ ( v ) θ 1 τ τ κ v 1 F ( κ ) w ( κ ) d κ , w I θ 2 v F τ = [ w ( τ ) ] 1 Γ ( v ) τ θ 2 κ τ v 1 F ( κ ) w ( κ ) d κ , v > 0 .
 (ii)
If σ ( τ ) = τ and v = 1 , then inequality (16) is identical to inequality in (10).
 (iii)
If σ ( τ ) = τ and w = 1 , then inequality (16) is identical to inequality in (3).
 (iv)
If σ ( τ ) = τ and v = 1 , then inequality (16) is identical to inequality in (8).
Lemma 2.
Let 0 < θ 1 < θ 2 , let F : [ θ 1 , θ 2 ] R be a continuous with a derivative F L 1 [ θ 1 , θ 2 ] such that F ( τ ) = F 1 θ 1 + 1 θ 1 τ F ( κ ) d κ and let w : [ θ 1 , θ 2 ] R is nonnegative, an integrable, positive, and symmetric weighted function with respect to 2 θ 1 θ 2 θ 1 + θ 2 . If σ is an increasing and positive function from [ θ 1 , θ 2 ) onto itself such that its derivative σ ( τ ) is continuous on ( θ 1 , θ 2 ) , for v > 0 , then, we have
F 2 θ 1 θ 2 θ 1 + θ 2 I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 + σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 w 1 θ 1 w H σ I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ F H σ σ 1 1 θ 1 + w 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 I w H σ v , σ F H σ σ 1 1 θ 2 = 1 Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 w H σ ( τ ) d τ F H σ ( κ ) σ ( κ ) d κ 1 Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 w H σ ( τ ) d τ F H σ ( κ ) σ ( κ ) d κ
Proof. 
Let us set
1 Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 w H σ ( τ ) d τ F H σ ( κ ) σ ( κ ) d κ 1 Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 w H σ ( τ ) d τ F H σ ( κ ) σ ( κ ) d κ
= 1 Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 w H σ ( τ ) d τ F H σ ( κ ) σ ( κ ) d κ + 1 Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 w H σ ( τ ) d τ F H σ ( κ ) σ ( κ ) d κ : = Z 1 + Z 2 .
Taking integrating by parts, applying Lemma 1, (12) and (13), we get
Z 1 = 1 Γ ( v ) σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 w H σ ( τ ) d τ F H σ ( κ ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 1 Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ ( κ ) σ ( τ ) 1 θ 2 v 1 w H σ ( κ ) F H σ ( κ ) d κ = 1 Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ ( τ ) σ ( τ ) 1 θ 2 v 1 w H σ ( τ ) d τ F 2 θ 1 θ 2 θ 1 + θ 2 w 1 θ 2 × w H σ 1 σ 1 1 θ 2 Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 σ ( κ ) σ ( τ ) 1 θ 2 v 1 w H σ ( κ ) F H σ ( κ ) d κ = F 2 θ 1 θ 2 θ 1 + θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 w 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 = 1 2 F 2 θ 1 θ 2 θ 1 + θ 2 I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 + σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 w 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 .
Similarly, we get
Z 2 = 1 Γ ( v ) κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 w H σ ( τ ) d τ F H σ ( κ ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 1 Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 σ ( κ ) 1 θ 1 σ ( τ ) v 1 w H σ ( κ ) F H σ ( κ ) d κ = 1 Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 w H σ ( τ ) d τ F 2 θ 1 θ 2 θ 1 + θ 2 w 1 θ 1 w H σ 1 σ 1 1 θ 1 Γ ( v ) × σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 σ ( κ ) 1 θ 1 σ ( τ ) v 1 w H σ ( κ ) F H σ ( κ ) d κ
= F 2 θ 1 θ 2 θ 1 + θ 2 I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 w 1 θ 1 w H σ I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ F H σ σ 1 1 θ 1 = 1 2 F 2 θ 1 θ 2 θ 1 + θ 2 I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 + σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 w 1 θ 1 w H σ I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ F H σ σ 1 1 θ 1 .
As a result, we can conclude:
Z 1 + Z 2 : = F 2 θ 1 θ 2 θ 1 + θ 2 I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ w H σ σ 1 1 θ 1 + σ 1 θ 1 + θ 2 2 θ 1 θ 2 I v , σ w H σ σ 1 1 θ 2 w 1 θ 1 w H σ I σ 1 θ 1 + θ 2 2 θ 1 θ 2 + v , σ F H σ σ 1 1 θ 1 + w 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 I w H σ v , σ F H σ σ 1 1 θ 2 ,
we achieve the intended result. □

3. Main Results

We can conclude the following Hermite-Hadamard-Fejér inequalities with the help of Lemma 2.
Theorem 7.
Suppose that all the conditions of Lemma 2 and | F | is harmonically convex on [ θ 1 , θ 2 ] and σ is an increasing and positive function from [ θ 1 , θ 2 ) onto itself such that its derivative σ ( τ ) is continuous on ( θ 1 , θ 2 ) , for v > 0 , then we have
Z 1 + Z 2 | | w | | 1 θ 2 , θ 1 + θ 2 2 θ 1 θ 2 , ( θ 1 θ 2 ) v Γ ( v ) W 1 θ 1 , θ 2 F H θ 1 + W 2 θ 1 , θ 2 F H θ 2 + | | w | | θ 1 + θ 2 2 θ 1 θ 2 , 1 θ 1 , ( θ 1 θ 2 ) v Γ ( v ) W 3 θ 1 , θ 2 F H θ 1 + W 4 θ 1 , θ 2 F H θ 2 | | w | | 1 θ 1 , 1 θ 2 , ( θ 1 θ 2 ) v Γ ( v ) W 1 θ 1 , θ 2 + W 3 θ 1 , θ 2 F H θ 1 + W 2 θ 1 , θ 2 + W 4 θ 1 , θ 2 F H θ 2 ,
where W 1 θ 1 , θ 2 , W 2 θ 1 , θ 2 , W 3 θ 1 , θ 2 , and W 4 θ 1 , θ 2 are defined as follows:
W 1 θ 1 , θ 2 = 2 v θ 1 θ 2 1 v θ 1 + θ 2 v 2 F 1 v , v ; 1 v ; 2 θ 1 θ 1 + θ 2 v + 2 v 1 ( θ 1 θ 2 ) 1 θ 1 1 θ 2 v θ 2 ( v + 1 ) π θ 1 1 θ 2 v 1 csc ( π v ) ,
W 2 θ 1 , θ 2 2 v 1 ( θ 1 θ 2 ) v v 2 v + 1 ( v + 1 ) π θ 2 θ 1 v + 2 csc ( π v ) + ( θ 2 θ 1 ) v + 1 2 ( v + 1 ) θ 1 2 θ 2 ( θ 1 + θ 2 ) v 2 F 1 v , v ; 1 v ; 2 θ 1 θ 1 + θ 2 θ 1 v ( v + 1 ) ,
W 3 θ 1 , θ 2 = 2 v 1 ( θ 2 θ 1 ) 1 θ 1 1 θ 2 v θ 1 θ 2 2 F 1 1 , v + 1 ; v + 2 ; θ 2 θ 1 2 θ 2 1 θ 2 v + 1
and
W 4 θ 1 , θ 2 2 v 1 ( θ 1 θ 2 ) 1 θ 1 1 θ 2 v θ 1 2 2 F 1 1 , v + 1 ; v + 2 ; θ 2 θ 1 2 θ 2 1 θ 1 ( v + 1 ) .
Proof. 
Using the Lemma 2 as well as properties of the modulus and the harmonically convex function of | F | , we get
Z 1 + Z 2 = 1 Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 w H σ ( τ ) d τ F H σ ( κ ) σ ( κ ) d κ 1 Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 w H σ ( τ ) d τ F H σ ( κ ) σ ( κ ) d κ 1 Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 w H σ ( τ ) d τ F H σ ( κ ) σ ( κ ) d κ + 1 Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 w H σ ( τ ) d τ F H σ ( κ ) σ ( κ ) d κ .
Since F is harmonic-convex on θ 1 , θ 2 , where κ σ 1 1 θ 2 , σ 1 1 θ 1
( F H σ ) ( κ ) = F θ 1 ( θ 2 σ ( κ ) ) σ ( κ ) ( θ 2 θ 1 ) 1 θ 1 + θ 2 ( σ ( κ ) θ 1 ) σ ( κ ) ( θ 2 θ 1 ) 1 θ 2 θ 1 ( θ 2 σ ( κ ) ) σ ( κ ) ( θ 2 θ 1 ) F H θ 1 + θ 2 ( σ ( κ ) θ 1 ) σ ( κ ) ( θ 2 θ 1 ) F H θ 2 .
Consequently, we obtain
Z 1 + Z 2 | | w | | 1 θ 2 , θ 1 + θ 2 2 θ 1 θ 2 , ( θ 2 θ 1 ) Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 d τ × θ 1 ( θ 2 σ ( κ ) ) σ ( κ ) F H θ 1 + θ 2 ( σ ( κ ) θ 1 ) σ ( κ ) F H θ 2 σ ( κ ) d κ + | | w | | θ 1 + θ 2 2 θ 1 θ 2 , 1 θ 1 , ( θ 2 θ 1 ) Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 d τ × θ 1 ( θ 2 σ ( κ ) ) σ ( κ ) F H θ 1 + θ 2 ( σ ( κ ) θ 1 ) σ ( κ ) F H θ 2 σ ( κ ) d κ ,
where
κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 d τ = 1 θ 1 σ ( κ ) v v
and
σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 d τ = σ ( κ ) 1 θ 2 v v .
Using the above calculations, we obtain the following integral
Z 1 + Z 2 | | w | | 1 θ 2 , θ 1 + θ 2 2 θ 1 θ 2 , ( θ 2 θ 1 ) v Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 θ 1 σ ( κ ) 1 θ 2 v ( θ 2 σ ( κ ) ) σ ( κ ) F H θ 1 + θ 2 σ ( κ ) 1 θ 2 v ( σ ( κ ) θ 1 ) σ ( κ ) F H θ 2 σ ( κ ) d κ + | | w | | θ 1 + θ 2 2 θ 1 θ 2 , 1 θ 1 , ( θ 2 θ 1 ) v Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 θ 1 1 θ 1 σ ( κ ) v ( θ 2 σ ( κ ) ) σ ( κ ) F H θ 1 + θ 2 1 θ 2 σ ( κ ) v ( σ ( κ ) θ 1 ) σ ( κ ) F H θ 2 σ ( κ ) d κ
We can obtain the necessary result (28) by doing basic integral calculations based on inequality (32). □
Theorem 8.
Suppose that all the conditions of Lemma 2 and | F | q is harmonically convex on [ θ 1 , θ 2 ] with q 1 and σ is an increasing and positive function from [ θ 1 , θ 2 ) onto itself such that its derivative σ ( τ ) is continuous on ( θ 1 , θ 2 ) , for v > 0 , then we have
Z 1 + Z 2 θ 2 θ 1 v + 1 2 θ 1 θ 2 v + 1 v ( v + 1 ) 1 1 q × | | w | | 1 θ 2 , θ 1 + θ 2 2 θ 1 θ 2 , ( θ 1 θ 2 ) Γ ( v ) W 1 θ 1 , θ 2 F H θ 1 q + W 2 θ 1 , θ 2 F H θ 2 q 1 q + | | w | | θ 1 + θ 2 2 θ 1 θ 2 , 1 θ 1 , ( θ 1 θ 2 ) Γ ( v ) W 3 θ 1 , θ 2 F H θ 1 q + W 4 θ 1 , θ 2 F H θ 2 q 1 q θ 2 θ 1 v + 1 2 θ 1 θ 2 v + 1 v ( v + 1 ) 1 1 q | | w | | 1 θ 1 , 1 θ 2 , ( θ 1 θ 2 ) Γ ( v ) W 1 θ 1 , θ 2 + W 3 θ 1 , θ 2 F H θ 1 q 1 q + W 2 θ 1 , θ 2 + W 4 θ 1 , θ 2 F H θ 2 q 1 q ,
where W 1 θ 1 , θ 2 , W 2 θ 1 , θ 2 , W 3 θ 1 , θ 2 , and W 4 θ 1 , θ 2 are defined in Theorem 7.
Proof. 
Using the Lemma 2 as well as properties of power mean inequality and the harmonically convex function of | F | q , we get
Z 1 + Z 2 1 Γ ( v ) σ 1 1 θ 2 σ 1 θ 2 + θ 1 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 w H σ ( τ ) d τ F H σ ( κ ) σ ( κ ) d κ + 1 Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 w H σ ( τ ) d τ F H σ ( κ ) σ ( κ ) d κ 1 Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 w H σ ( τ ) d τ σ ( κ ) d κ 1 1 q × σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 w H σ ( τ ) d τ F H σ ( κ ) q σ ( κ ) d κ 1 q + 1 Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 w H σ ( τ ) d τ σ ( κ ) d κ 1 1 q × σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 w H σ ( τ ) d τ F H σ ( κ ) q σ ( κ ) d κ 1 q .
Since F is harmonic-convex on θ 1 , θ 2 , where κ σ 1 1 θ 2 , σ 1 1 θ 1
( F H σ ) ( κ ) = F θ 1 ( θ 2 σ ( κ ) ) σ ( κ ) ( θ 2 θ 1 ) 1 θ 1 + θ 2 ( σ ( κ ) θ 1 ) σ ( κ ) ( θ 2 θ 1 ) 1 θ 2 θ 1 ( θ 2 σ ( κ ) ) σ ( κ ) ( θ 2 θ 1 ) F H θ 1 + θ 2 ( σ ( κ ) θ 1 ) σ ( κ ) ( θ 21 θ 1 ) F H θ 2 .
As a result, we get
Z 1 + Z 2 | | w | | 1 θ 2 , θ 1 + θ 2 2 θ 1 θ 2 , Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 d τ σ ( κ ) d κ 1 1 q × σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 d τ F H σ ( κ ) q σ ( κ ) d κ 1 q + | | w | | θ 1 + θ 2 2 θ 1 θ 2 , 1 θ 1 , Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 d τ σ ( κ ) d κ 1 1 q × σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 d τ F H σ ( κ ) q σ ( κ ) d κ 1 q | | w | | 1 θ 2 , θ 1 + θ 2 2 θ 1 θ 2 , ( θ 1 θ 2 ) Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 d τ σ ( κ ) d κ 1 1 q × σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 d τ θ 1 ( θ 2 σ ( κ ) ) σ ( κ ) F H θ 1 q + θ 2 ( σ ( κ ) θ 1 ) σ ( κ ) F H θ 2 q σ ( κ ) d κ 1 q + | | w | | θ 1 + θ 2 2 θ 1 θ 2 , 1 θ 1 , ( θ 1 θ 2 ) Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 d τ σ ( κ ) d κ 1 1 q × σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 d τ θ 1 ( θ 2 σ ( κ ) ) σ ( κ ) F H θ 1 q + θ 2 ( σ ( κ ) θ 1 ) σ ( κ ) F H θ 2 q σ ( κ ) d κ 1 q ,
where it is obvious that
σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 d τ σ ( κ ) d κ = σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 d τ σ ( κ ) d κ = θ 2 θ 1 v + 1 2 θ 1 θ 2 v + 1 v ( v + 1 ) .
We can obtain the following integral after inserting (37) into (36)
Z 1 + Z 2 | | w | | 1 θ 2 , θ 1 + θ 2 2 θ 1 θ 2 , ( θ 1 θ 2 ) Γ ( v ) θ 2 θ 1 v + 1 2 θ 1 θ 2 v + 1 v ( v + 1 ) 1 1 q × σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 d τ θ 1 ( θ 2 σ ( κ ) ) σ ( κ ) F H θ 1 q + θ 2 ( σ ( κ ) θ 1 ) σ ( κ ) F H θ 2 q σ ( κ ) d κ 1 q + | | w | | θ 1 + θ 2 2 θ 1 θ 2 , 1 θ 1 , ( θ 2 θ 1 ) Γ ( v ) θ 2 θ 1 v + 1 2 θ 1 θ 2 v + 1 v ( v + 1 ) 1 1 q × σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 d τ θ 1 ( θ 2 σ ( κ ) ) σ ( κ ) F H θ 1 q + θ 2 ( σ ( κ ) θ 1 ) σ ( κ ) F H θ 2 q σ ( κ ) d κ 1 q .
We can obtain the necessary result (33) by doing basic integral calculations based on inequality (38). □
Theorem 9.
Suppose that all the conditions of Lemma 2 and | F | q is harmonically convex on [ θ 1 , θ 2 ] with q > 1 and σ is an increasing and positive function from [ θ 1 , θ 2 ) onto itself such that its derivative σ ( τ ) is continuous on ( θ 1 , θ 2 ) , for v > 0 , then we have
Z 1 + Z 2 θ 2 θ 1 p v + 1 2 θ 1 θ 2 p v + 1 p v ( p v + 1 ) 1 p × | | w | | 1 θ 2 , θ 1 + θ 2 2 θ 1 θ 2 , ( θ 2 θ 1 ) Γ ( v ) X 1 θ 1 , θ 2 ; σ κ F H θ 1 q + X 2 θ 1 , θ 2 ; σ κ F H θ 2 q 1 q + | | w | | θ 1 + θ 2 2 θ 1 θ 2 , 1 θ 1 , ( θ 2 θ 1 ) Γ ( v ) X 3 θ 1 , θ 2 ; σ κ F H θ 1 q + X 2 θ 1 , θ 2 ; σ κ F H θ 2 q 1 q θ 2 θ 1 p v + 1 2 θ 1 θ 2 p v + 1 p v ( p v + 1 ) 1 p | | w | | 1 θ 1 , 1 θ 2 , ( θ 2 θ 1 ) Γ ( v ) X 1 θ 1 , θ 2 ; σ κ + X 3 θ 1 , θ 2 ; σ κ F H θ 1 q 1 q + X 2 θ 1 , θ 2 ; σ κ X 4 θ 1 , θ 2 ; σ κ F H θ 2 q 1 q ,
where X 1 θ 1 , θ 2 ; σ κ , X 2 θ 1 , θ 2 ; σ κ , X 3 θ 1 , θ 2 ; σ κ , and X 4 θ 1 , θ 2 ; σ κ , are defined as follows:
X 1 θ 1 , θ 2 ; σ κ = 1 2 θ 1 θ 2 1 + θ 1 θ 2 ln θ 1 + θ 2 θ 1 θ 2 ln 2 θ 2 ,
X 2 θ 1 , θ 2 ; σ κ = 1 2 θ 2 θ 1 2 θ 1 θ 2 ln θ 1 + θ 2 θ 1 θ 2 ln 2 θ 2 1 ,
X 3 θ 1 , θ 2 ; σ κ = 1 2 θ 1 θ 2 1 + θ 1 θ 2 ln θ 1 + θ 2 θ 1 θ 2 + ln 1 θ 1 + ln 2
and
X 4 θ 1 , θ 2 ; σ κ = 1 2 θ 2 θ 1 2 θ 1 θ 2 ln θ 1 + θ 2 θ 1 θ 2 ln θ 1 + ln 2 1 .
Proof. 
Using the Lemma 2 as well as properties of well-known Hölder’s inequality and the harmonically convex function of | F | q , we have
Z 1 + Z 2 1 Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 w H σ ( τ ) d τ F H σ ( κ ) σ ( κ ) d κ + 1 Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 w H σ ( τ ) d τ F H σ ( κ ) σ ( κ ) d κ 1 Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 w H σ ( τ ) d τ p σ ( κ ) d κ 1 p × σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 F H σ ( κ ) q σ ( κ ) d κ 1 q + 1 Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 w H σ ( τ ) d τ p σ ( κ ) d κ 1 p × σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 F H σ ( κ ) p σ ( κ ) d κ 1 p .
Since F is harmonic-convex on θ 1 , θ 2 , where κ σ 1 1 θ 2 , σ 1 1 θ 1
( F H σ ) ( κ ) = F θ 1 ( θ 2 σ ( κ ) ) σ ( κ ) ( θ 2 θ 1 ) 1 θ 1 + θ 2 ( σ ( κ ) θ 1 ) σ ( κ ) ( θ 2 θ 1 ) 1 θ 2 θ 1 ( θ 2 σ ( κ ) ) σ ( κ ) ( θ 2 θ 1 ) F H θ 1 + θ 2 ( σ ( κ ) θ 1 ) σ ( κ ) ( θ 2 θ 1 ) F H θ 2 .
As a result, we get
Z 1 + Z 2 | | w | | 1 θ 2 , θ 1 + θ 2 2 θ 1 θ 2 , Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 d τ p σ ( κ ) d κ 1 p × σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 F H σ ( κ ) q σ ( κ ) d κ 1 q + | | w | | θ 1 + θ 2 2 θ 1 θ 2 , 1 θ 1 , Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 d τ p σ ( κ ) d κ 1 p × σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 F H σ ( κ ) q σ ( κ ) d κ 1 q | | w | | 1 θ 2 , θ 1 + θ 2 2 θ 1 θ 2 , ( θ 2 θ 1 ) Γ ( v ) σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 d τ p σ ( κ ) d κ 1 p × σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 θ 1 ( θ 2 σ ( κ ) ) σ ( κ ) F H θ 1 q + θ 2 ( σ ( κ ) θ 1 ) σ ( κ ) F H θ 2 q σ ( κ ) d κ 1 q + | | w | | θ 1 + θ 2 2 θ 1 θ 2 , 1 θ 1 , ( θ 2 θ 1 ) Γ ( v ) σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 d τ p σ ( κ ) d κ 1 p × σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 θ 1 ( θ 2 σ ( κ ) ) σ ( κ ) F H θ 1 q + θ 2 ( σ ( κ ) θ 1 ) σ ( κ ) F H θ 2 q σ ( κ ) d κ 1 q ,
where it is obvious
σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 κ σ 1 1 θ 1 σ ( τ ) 1 θ 1 σ ( τ ) v 1 d τ p σ ( κ ) d κ = σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 2 κ σ ( τ ) σ ( τ ) 1 θ 2 v 1 d τ p σ ( κ ) d κ = θ 2 θ 1 p v + 1 2 θ 1 θ 2 p v + 1 p v ( p v + 1 ) .
We obtain the following integral after inserting (43) into (42):
Z 1 + Z 2 | | w | | 1 θ 2 , θ 1 + θ 2 2 θ 1 θ 2 , ( θ 2 θ 1 ) Γ ( v ) θ 2 θ 1 p v + 1 2 θ 1 θ 2 p v + 1 p v ( p v + 1 ) 1 p × σ 1 1 θ 2 σ 1 θ 1 + θ 2 2 θ 1 θ 2 θ 1 ( θ 2 σ ( κ ) ) σ ( κ ) F H θ 1 q + θ 2 ( σ ( κ ) θ 1 ) σ ( κ ) F H θ 2 q σ ( κ ) d κ 1 q + | | w | | θ 1 + θ 2 2 θ 1 θ 2 , 1 θ 1 , ( θ 2 θ 1 ) Γ ( v ) θ 2 θ 1 p v + 1 2 θ 1 θ 2 p v + 1 p v ( p v + 1 ) 1 p × σ 1 θ 1 + θ 2 2 θ 1 θ 2 σ 1 1 θ 1 θ 1 ( θ 2 σ ( κ ) ) σ ( κ ) F H θ 1 q + θ 2 ( σ ( κ ) θ 1 ) σ ( κ ) F H θ 2 q σ ( κ ) d κ 1 q .
We can obtain the necessary result (39) by doing basic integral calculations based on inequality (44). □

4. Conclusions

In this paper, inequalities of the Hermite-Hadamard-Fejér type for harmonically convex functions in fractional integral forms are given in this study. Using weighted fractional integrals with positive weighted symmetric function kernels, an integral identity and various midpoint fractional Hermite-Hadamard-Fejér type integral inequalities for harmonically convex functions are also found.

Author Contributions

Writing—original draft, H.K.; Writing—review and editing, H.K. and H.A.; Formal analysis, H.A. and M.A.L.; software, H.K. and M.V.-C.; Methodology, H.A.; Validation, M.V.-C.; Funding acquisition, M.V.-C.; Supervision, M.A.L. All authors have read and agreed to the published version of the manuscript.

Funding

Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, China.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The Chinese Government is to be acknowledged for providing postdoctoral studies to Humaira Kalsoom. We want to give thanks to the Dirección de investigación from Pontificia Universidad Católica del Ecuador for technical support to our research project entitled: Algunas desigualdades integrales para funciones convexas generalizadas y aplicaciones.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hermite, C. Sur deux limites d’une intégrale dé finie. Mathesis 1883, 3, 82. [Google Scholar]
  2. Hadamard, J. Étude sur les propriétés des fonctions entères et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
  3. Zafar, F.; Kalsoom, H.; Hussain, N. Some inequalities of Hermite–Hadamard type for n-times differentiable-geometrically convex functions. J. Nonlinear Sci. Appl. 2015, 8, 201–217. [Google Scholar] [CrossRef] [Green Version]
  4. Kalsoom, H.; Hussain, S. Some Hermite-Hadamard type integral inequalities whose n-times differentiable functions are s-logarithmically convex functions. Punjab Univ. J. Math. 2019, 2019, 65–75. [Google Scholar]
  5. Kalsoom, H.; Hussain, S.; Rashid, S. Hermite-Hadamard type integral inequalities for functions whose mixed partial derivatives are co-ordinated preinvex. Punjab Univ. J. Math. 2020, 52, 63–76. [Google Scholar]
  6. Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
  7. Sarikaya, M.Z.; Set, E.; Özdemir, M.E. New inequaities of Hermite-Hadamard’s type. Res. Rep. Collect. 2009, 12, 7. [Google Scholar]
  8. Mohammed, P.O.; Sarikaya, M.Z. On generalized fractional integral inequalities for twice differentiable convex functions. J. Comput. Appl. Math. 2020, 372, 112740. [Google Scholar] [CrossRef]
  9. Sarikaya, M.Z.; Akkurt, A.; Budak, H.; Yildirim, M.E.; Yildirim, H. Hermite-Hadamard’s inequalities for conformable fractional integrals. Konuralp J. Math. 2020, 8, 376–383. [Google Scholar] [CrossRef] [Green Version]
  10. Zhou, S.S.; Rashid, S.; Jarad, F.; Kalsoom, H.; Chu, Y.M. New estimates considering the generalized proportional Hadamard fractional integral operators. Adv. Differ. Equ. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
  11. Rashid, S.; Jarad, F.; Kalsoom, H.; Chu, Y.M. On Pólya–Szegö and Cebyšev type inequalities via generalized k-fractional integrals. Adv. Differ. Equ. 2020, 2020, 125. [Google Scholar] [CrossRef]
  12. Mohammed, P.O.; Aydi, H.; Kashuri, A.; Hamed, Y.S.; Abualnaja, K.M. Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels. Symmetry 2021, 13, 550. [Google Scholar] [CrossRef]
  13. Rashid, S.; Kalsoom, H.; Hammouch, Z.; Ashraf, R.; Baleanu, D.; Chu, Y.M. New multi-parametrized estimates having pth-order differentiability in fractional calculus for predominating h-convex functions in Hilbert space. Symmetry 2020, 12, 222. [Google Scholar] [CrossRef] [Green Version]
  14. Rashid, S.; Hammouch, Z.; Kalsoom, H.; Ashraf, R.; Chu, Y.M. New investigation on the generalized K-fractional integral operators. Front. Phys. 2020, 8, 25. [Google Scholar] [CrossRef]
  15. Rashid, S.; Jarad, F.; Noor, M.A.; Kalsoom, H.; Chu, Y.M. Inequalities by means of generalized proportional fractional integral operators with respect to another function. Mathematics 2019, 7, 1225. [Google Scholar] [CrossRef] [Green Version]
  16. Chu, Y.M.; Rashid, S.; Jarad, F.; Noor, M.A.; Kalsoom, H. More new results on integral inequalities for generalized K-fractional conformable Integral operators. Discret. Contin. Dyn. Syst. Ser. S 2021, 14, 2119. [Google Scholar]
  17. Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
  18. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
  19. Sarikaya, M.Z.; Yildirim, H. On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 2017, 17, 1049–1059. [Google Scholar] [CrossRef]
  20. Macdonald, I.G. Symmetric Functions and Orthogonal Polynomials; American Mathematical Society: New York, NY, USA, 1997. [Google Scholar]
  21. Fejér, L. Uber die Fourierreihen, II. J Math. Naturwiss Anz. Ungar. Akad. Wiss Hung. 1906, 24, 369–390. [Google Scholar]
  22. İşcan, İ. Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals. Stud. Univ. Babes Bolyai Math. 2015, 60, 355–366. [Google Scholar]
  23. İşcan, İ. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
  24. Latif, M.A.; Dragomir, S.S.; Momoniat, E. Some Feér Type Inequalities for Harmonically-convex Functions with Applications to Special Means. Available online: http://rgmia.org/papers/v18/v18a24.pdf (accessed on 15 March 2015).
  25. İşcan, İ. On generalization of different type integral inequalities for s-convex functions via fractional integrals. Math. Sci. Appl. E Notes 2014, 2, 55–67. [Google Scholar] [CrossRef] [Green Version]
  26. İşcan, İ.; Kunt, M.; Yazici, N. Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals. New Trends Math. Sci. 2016, 3, 239–253. [Google Scholar] [CrossRef]
  27. Jarad, F.; Abdeljawad, T.; Shah, K. On the weighted fractional operators of a function with respect to another function. Fractals 2020, 28, 2040011. [Google Scholar] [CrossRef]
  28. Osler, T.J. The fractional derivative of a composite function. SIAM J. Math. Anal. 1970, 1, 288–293. [Google Scholar] [CrossRef]
  29. Vanterler, J.; Sousa, C.; de Oliveira, E.C. On the Ψ–Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Kalsoom, H.; Vivas-Cortez, M.; Amer Latif, M.; Ahmad, H. Weighted Midpoint Hermite-Hadamard-Fejér Type Inequalities in Fractional Calculus for Harmonically Convex Functions. Fractal Fract. 2021, 5, 252. https://doi.org/10.3390/fractalfract5040252

AMA Style

Kalsoom H, Vivas-Cortez M, Amer Latif M, Ahmad H. Weighted Midpoint Hermite-Hadamard-Fejér Type Inequalities in Fractional Calculus for Harmonically Convex Functions. Fractal and Fractional. 2021; 5(4):252. https://doi.org/10.3390/fractalfract5040252

Chicago/Turabian Style

Kalsoom, Humaira, Miguel Vivas-Cortez, Muhammad Amer Latif, and Hijaz Ahmad. 2021. "Weighted Midpoint Hermite-Hadamard-Fejér Type Inequalities in Fractional Calculus for Harmonically Convex Functions" Fractal and Fractional 5, no. 4: 252. https://doi.org/10.3390/fractalfract5040252

APA Style

Kalsoom, H., Vivas-Cortez, M., Amer Latif, M., & Ahmad, H. (2021). Weighted Midpoint Hermite-Hadamard-Fejér Type Inequalities in Fractional Calculus for Harmonically Convex Functions. Fractal and Fractional, 5(4), 252. https://doi.org/10.3390/fractalfract5040252

Article Metrics

Back to TopTop