Abstract
Pooling strategies are fundamental to convolutional neural networks, shaping the trade-off between accuracy, robustness to spatial variations, and computational efficiency in modern visual recognition systems. In this paper, we present and validate ECA110-Pooling, a novel rule-based pooling operator inspired by elementary cellular automata. We conduct a systematic comparative study, benchmarking ECA110-Pooling against conventional pooling methods (MaxPooling, AveragePooling, MedianPooling, MinPooling, KernelPooling) as well as state-of-the-art (SOTA) architectures. Experiments on three benchmark datasets—ImageNet (subset), CIFAR-10, and Fashion-MNIST—across training horizons ranging from 20 to 50,000 epochs show that ECA110-Pooling consistently achieves higher Top-1 accuracy, lower error rates, and stronger F1-scores than traditional pooling operators, while maintaining computational efficiency comparable to MaxPooling. Moreover, when compared with SOTA models, ECA110-Pooling delivers competitive accuracy with substantially fewer parameters and reduced training time. These results establish ECA110-Pooling as a principled and validated approach to image classification, bridging the gap between fixed pooling schemes and complex deep architectures. Its interpretable, rule-based design highlights both theoretical significance and practical applicability in contexts that demand a balance of accuracy, efficiency, and scalability.