Abstract
In the present work, off-design operating condition is considered to be the ability of the turbine to operate down to 50% to 20% of its nominal intake air flow rate. An important consequence of these off-design points is the change in the inlet incidence angle, which varied from nominal to −20°. Tests were performed on a seven-blade rotor cascade with platform cooling through an upstream slot simulating the stator-to-rotor interface gap. To model the impact of rotation on purge flow injection, a set of fins were installed inside the slot to give the coolant flow a tangential direction. Different cascades’ off-design operating conditions were tested, covering downstream velocity values up to Ma2is = 0.55, with two inlet turbulence intensity levels of 0.6% a and 7%. A thermal measurement campaign was conducted with the Thermochromic Liquid Crystal technique to measure the adiabatic film cooling effectiveness at various coolant-to-main-flow mass flow ratios, different incidence angles, mainstream Mach numbers, and turbulence levels. The results describe the complexity of the turbine operating under off-design operating conditions, relating the improvement in the platform thermal protection to the reduced secondary-flows activity induced by negative incidence.