The Performance of Diagnostic Tests for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the South African Population: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
2.4. Data Charting and Extraction
2.5. Quality Assessment
3. Results
3.1. Study Selection
3.2. SARS-CoV-2 Gene and Antigen-Based Diagnostic Tests
3.3. SARS-CoV-2 Antibody-Based Diagnostic Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Situation Report. 2020. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update---17-november-2020 (accessed on 23 November 2020).
- World Health Organization. Laboratory Testing for Coronavirus Disease 2019 (COVID-19) in Suspected Human Cases. License: CC BY-NC-SA 331503.331500 IGO. Available online: https://apps.who.int/iris/handle/10665/331501 (accessed on 23 November 2020).
- Hans, L.; Steegen, K.; Ketseoglou, I.; Mahlumba, Z.; Cassim, N.; Wiggill, T.; Venter, W.F.; Stevens, W. Preparing for the next pandemic: Lessons from rapid scale-up of SARS-CoV-2 testing in a South African high-throughput automated HIV molecular laboratory. Int. J. Infect. Dis. 2021, 110, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, X.; Li, T.; Zhang, S.; Wang, L.; Wu, X.; Liu, J. The genetic sequence, origin, and diagnosis of SARS-CoV-2. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1629–1635. [Google Scholar] [CrossRef] [PubMed]
- Astuti, I.; Ysrafil. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr. 2020, 14, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.; Goncalves, P.; Charbit, B.; Grzelak, L.; Beretta, M.; Planchais, C.; Bruel, T.; Rouilly, V.; Bondet, V.; Hadjadj, J.; et al. Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection. Nat. Immunol. 2021, 22, 1428–1439. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J.; et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin. Infect. Dis. 2020, 71, 2027–2034. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Overview of Testing for SARS-CoV-2, the Virus That Causes COVID-19. 2022. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing-overview.html (accessed on 15 August 2022).
- Jones, D.L.; Baluja, M.Q.; Graham, D.W.; Corbishley, A.; McDonald, J.E.; Malham, S.K.; Hillary, L.S.; Connor, T.R.; Gaze, W.H.; Moura, I.B.; et al. Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. Sci. Total Environ. 2020, 749, 141364. [Google Scholar] [CrossRef]
- Saylam, B.; Uguz, M.; Yarpuzlu, M.; Efesoy, O.; Akbay, E.; Çayan, S. The presence of SARS-CoV-2 virus in semen samples of patients with COVID-19 pneumonia. Andrologia 2021, 53, e14145. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef]
- Hong, Q.N.; Fabregues, S.; Bartlett, G.; Boardman, F.; Cargo, M.; Dagenais, P.; Gagnon, M.-P.; Griffiths, F.; Nicolau, B.; O’Cathain, A. The Mixed Methods Appraisal Tool (MMAT) version 2018 for information professionals and researchers. Educ. Inf. 2018, 34, 285–291. [Google Scholar] [CrossRef]
- Umunnakwe, C.N.; Makatini, Z.N.; Maphanga, M.; Mdunyelwa, A.; Mlambo, K.M.; Manyaka, P.; Nijhuis, M.; Wensing, A.; Tempelman, H.A. Evaluation of a commercial SARS-CoV-2 multiplex PCR genotyping assay for variant identification in resource-scarce settings. PLoS ONE 2022, 17, e0269071. [Google Scholar] [CrossRef] [PubMed]
- Marais, G.; Naidoo, M.; Hsiao, N.Y.; Valley-Omar, Z.; Smuts, H.; Hardie, D. The implementation of a rapid sample preparation method for the detection of SARS-CoV-2 in a diagnostic laboratory in South Africa. PLoS ONE 2020, 15, e0241029. [Google Scholar] [CrossRef] [PubMed]
- Marais, G.; Hsiao N-y Iranzadeh, A.; Doolabh, D.; Joseph, R.; Enoch, A.; Chu C-y Williamson, C.; Brink, A.; Hardie, D. Improved oral detection is a characteristic of Omicron infection and has implications for clinical sampling and tissue tropism. J. Clin. Virol. 2022, 152, 105170. [Google Scholar] [CrossRef] [PubMed]
- Omar, S.; Brown, J.M.; Mathivha, R.L.; Bahemia, I.; Nabeemeeah, F.; Martinson, N. The impact of a mobile COVID-19 polymerase chain reaction laboratory at a large tertiary hospital during the first wave of the pandemic: A retrospective analysis. S. Afr. Med. J. 2021, 111, 957–960. [Google Scholar] [CrossRef] [PubMed]
- Akingba, O.L.; Sprong, K.; Marais, G.; Hardie, D.R. Field performance evaluation of the PanBio rapid SARS-CoV-2 antigen assay in an epidemic driven by the B.1.351 variant in the Eastern Cape, South Africa. J. Clin. Virol. Plus. 2021, 1, 100013. [Google Scholar] [CrossRef] [PubMed]
- Majam, M.; Msolomba, V.; Venter, F.; Scott, L.E.; Kahamba, T.; Stevens, W.S.; Rademeyer, M.; van Tonder, T.; Karim, S.; Kadam, R.; et al. Monitored Implementation of COVID-19 Rapid Antigen Screening at Taxi Ranks in Johannesburg, South Africa. Diagnostics 2022, 12, 402. [Google Scholar] [CrossRef]
- Makatsa, M.S.; Tincho, M.B.; Wendoh, J.M.; Ismail, S.D.; Nesamari, R.; Pera, F.; de Beer, S.; David, A.; Jugwanth, S.; Gededzha, M.P.; et al. SARS-CoV-2 Antigens Expressed in Plants Detect Antibody Responses in COVID-19 Patients. Front. Plant Sci. 2021, 12, 589940. [Google Scholar] [CrossRef]
- Gededzha, M.P.; Mampeule, N.; Jugwanth, S.; Zwane, N.; David, A.; Burgers, W.A.; Blackburn, J.M.; Grove, J.S.; George, J.A.; Sanne, I.; et al. Performance of the EUROIMMUN Anti-SARS-CoV-2 ELISA Assay for detection of IgA and IgG antibodies in South Africa. PLoS ONE 2021, 16, 0252317. [Google Scholar] [CrossRef]
- Jugwanth, S.; Gededzha, M.P.; Mampeule, N.; Zwane, N.; David, A.; Burgers, W.A.; Blackburn, J.M.; Grove, J.S.; George, J.A.; Sanne, I.; et al. Performance of the Abbott SARS-CoV-2 IgG serological assay in South African 2 patients. PLoS ONE 2022, 17, e0262442. [Google Scholar] [CrossRef]
- Matefo, L.; Cloete, V.; Armand, B.P.; Dominique, G.; Samantha, P.; John, F.; Craig, T.; Daniel, W.; Theresa, L.; Sunetra, G.; et al. Validation of laboratory developed serology assays for detection of IgG antibody to severe acute respiratory syndrome coronavirus 2 in the South African population. J. Virol. Methods 2022, 307, 114571. [Google Scholar] [CrossRef]
- Grove, J.S.; Mayne, E.S.; Burgers, W.A.; Blackburn, J.; Jugwanth, S.; Stevens, W.; Scott, L.; David, A.; Gededzha, M.; Sanne, I.M. Validation of Roche immunoassay for severe acute respiratory coronavirus 2 in South Africa. S. Afr. J. Infect. Dis. 2021, 36, 6. [Google Scholar] [CrossRef]
- David, A.; Scott, L.; Jugwanth, S.; Gededzha, M.; Kahamba, T.; Zwane, N.; Mampeule, N.; Sanne, I.; Stevens, W.; Mayne, E.S. Operational characteristics of 30 lateral flow immunoassays used to identify COVID-19 immune response. J. Immunol. Methods 2021, 496, 113096. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.A.; Meiring, M.; Cummins, T.; Chegou, N.N.; Claassen, C.; Du Plessis, N.; Flinn, M.; Hiemstra, A.; Kleynhans, L.; Leukes, V.; et al. Higher SARS-CoV-2 seroprevalence in workers with lower socioeconomic status in Cape Town, South Africa. PLoS ONE 2021, 16, e0247852. [Google Scholar] [CrossRef] [PubMed]
- Wolter, N.; Tempia, S.; von Gottberg, A.; Bhiman, J.N.; Walaza, S.; Kleynhans, J.; Moyes, J.; Buys, A.; McMorrow, M.L.; Aitken, S. Seroprevalence of Severe Acute Respiratory Syndrome Coronavirus 2 After the Second Wave in South Africa in Human Immunodeficiency Virus–Infected and Uninfected Persons: A Cross-Sectional Household Survey. Clin. Infect. Dis. 2022, 75, e57–e68. [Google Scholar] [CrossRef]
- Maritz, L.; Woudberg, N.J.; Bennett, A.C.; Soares, A.; Lapierre, F.; Devine, J.; Kimberg, M.; Bouic, P.J. Validation of high-throughput, semiquantitative solid phase SARS coronavirus-2 serology assays in serum and dried blood spot matrices. Bioanalysis 2021, 13, 1183–1193. [Google Scholar] [CrossRef]
- Kwatra, G.; Nunes, M.; Dhar, N.; Baillie, V.; Serafin, N.; Jones, S.; Madhi, S.A. Correlation of dried blood spots and plasma for quantification of Immunoglobulin (IgG) against Receptor binding domain and full length spike protein of SARS-CoV-2. J. Virol. Methods 2022, 300, 114394. [Google Scholar] [CrossRef]
- Irwin, N.; Murray, L.; Ozynski, B.; Richards, G.A.; Paget, G.; Venturas, J.; Kalla, I.; Diana, N.; Mahomed, A.; Zamparini, J. Age significantly influences the sensitivity of SARS-CoV-2 rapid antibody assays. Int. J. Infect. Dis. 2021, 109, 304–309. [Google Scholar] [CrossRef]
Study (Author, Ref) | Province | Study Design | Date Range | Clinical Disease Stage | SARS-CoV-2 Viral Variants |
---|---|---|---|---|---|
Genotyping | |||||
Umunnakwe et al., 2022 [14] | Limpopo | Cross-sectional random sampling of samples from biorepository | April–Oct 2021 | Not reported | Beta, Delta |
RT-PCR | |||||
Marais et al., 2020 [15] | Cape Town, Western Cape | Cross-sectional retrospective testing of preselected samples | Not reported | Not reported | Not reported |
Marais et al., 2022 [16] | Cape town, Western Cape | Prospective cross-sectional | 20 August–19 November 2021 19 November 2021– 7 February 2022 | Ambulatory outpatients | Delta, Omicron |
Omar et al., 2021 [17] | Johannesburg, Gauteng | Retrospective descriptive cross-sectional | 20 May–8 August 2020 | Symptomatic Asymptomatic | D614G |
Rapid antigen testing | |||||
Akingba et al., 2021 [18] | Nelson Mandela Bay, Eastern Cape | Prospective cross-sectional evaluation | 17–20 November 2020 | Symptomatic | Beta |
Majam et al., 2022 [19] | Johannesburg, Gauteng | Prospective evaluation | June–September 2021 | Random sampling | Delta |
Serological testing | |||||
Makatsa et al., 2021 [20] | Gauteng and Western Cape | Prospective evaluation | 10 April–26 May 2020 | Symptomatic Asymptomatic | D614G |
Gededzha et al., 2021 [21] | Braamfontein, Gauteng | Retrospective cross-sectional evaluation of volunteer samples | Not reported | 87% symptomatic, 13% asymptomatic | Not reported |
Jugwanth et al., 2022 [22] | Braamfontein, Gauteng | Cross-sectional sample of volunteers | Not reported | 87% symptomatic, 13% asymptomatic | Not reported |
Matefo et al., 2022 [23] | Bloemfontein, Free State | Retrospective cross-sectional of patient samples | March–October 2020 | D614G | |
Grove et al., 2021 [24] | Johannesburg, Gauteng | Prospective analytical evaluation | May–August 2020 | Not reported | D614G |
David et al., 2021 [25] | Not reported | Retrospective cross-sectional testing on previously confirmed samples | Not reported | Not reported | Not reported |
Shaw et al., 2021 [26] | Cape Town, Western Cape | Cross-sectional volunteers | 17 August–4 September 2020 | Volunteers | D614G |
Wolter et al., 2022 [27] | Mitchell’s Plain Western Cape, Pietermaritzburg KwaZulu-Natal, Klerksdorp Northwest | Prospective cross-sectional household seroprevalence survey in 3 communities | March and April 2021 | Not reported | Beta |
Maritz et al., 2021 [28] | Stellenbosch, Western Cape | Retrospective cross-sectional of volunteer samples | Not reported | Asymptomatic | Not reported |
Kwatra et al., 2022 [29] | Soweto, Gauteng | Retrospective sampling of participants testing positive | April–December 2020 | Hospitalised Symptomatic | D614G, Beta |
Irwin et al., 2021 [30] | Johannesburg, Gauteng | Cross-sectional of randomly selected in- and out-patients | Not reported | Symptomatic Asymptomatic | Not reported |
Study (Author, Ref) | Product Name | Manufacturer /Country | Analyte Measured | Sample | Sample Volume | Read Time | Complexity |
---|---|---|---|---|---|---|---|
Genotyping | |||||||
Umunnakwe et al., 2022 [14] | AllplexTM SARS-CoV-2 Variants II multiplex real-time PCR genotyping assay | Seegene/South Korea | Specific primers and probes for Beta and Delta variants | Nasopharyngeal swab | Not applicable | ~2 h | Slightly complex |
RT-PCR | |||||||
Marais et al., 2020 [15] | Rapid sample preparation (RSP) Abbott RealTime SARS-CoV-2 Assay or AllplexTM 2019-nCoV assay | Abbott Laboratories and Seegene | E, N, RdRp genes | Nasopharyngeal and oropharyngeal swabs | Not applicable | Not reported | Slightly complex |
Marais et al., 2022 [16] | RT-PCR on saliva and mid-turbinate sample vs. respiratory swab | Abbott Laboratories/USA and Seegene/South Korea | E, N, RdRp genes | Saliva, mid-turbinate swab | Not applicable | 8–12 h | Medium complex |
FlowFlex SARS-CoV-2 N protein lateral flow assay | ACON Laboratories Inc./USA | Nucleocapsid protein | Saliva, mid-turbinate swab | Not applicable | 15 min | Technically simple | |
Omar et al., 2021 [17] | Thermocycler (Genechecker; and a 2400 SARS-CoV-2 Smartchecker PCR kit | Genesystem/South Korea | N, RdRp gene | Nasopharyngeal, oropharyngeal, nasal swabs, tracheal aspirates | Not applicable | 45 min | Slightly complex |
Rapid antigen testing | |||||||
Akingba et al., 2021 [18] | PanBio COVID-19 antigen test | Abbott Rapid Diagnostics/USA | Nucleocapsid protein | Nasopharyngeal swab | Not applicable | 15 min | Technically simple |
Majam et al., 2022 [19] | PanBio COVID-19 antigen test Device | Abbott Rapid Diagnostics/USA | Nucleocapsid protein | Nasopharyngeal swab | Not applicable | 15 min | Technically simple |
Serological testing | |||||||
Makatsa et al., 2021 [20] | Indirect in-house ELISA using recombinant plant-derived viral proteins | Cape BioPharms/South Africa | IgG | Serum | Not reported | Not reported | Slightly complex |
Gededzha et al., 2021 [21] | EUROIMMUN Anti-SARS-CoV-2 IgA and IgG | EUROIMMUN Medizinische Labor diagnostika AG/Germany | IgG, IgA | Serum, plasma | Not reported | Not reported | Slightly complex |
Jugwanth et al., 2022 [22] | Abbott SARS-CoV-2 IgG Architect | Abbott Diagnostics/USA | IgG | Serum, plasma | Not reported | Not reported | Slightly complex |
Abbott SARS-CoV-2 Alinity | Abbott Diagnostics/USA | IgG | Serum, plasma | Not reported | Not reported | Slightly complex | |
Matefo et al., 2022 [23] | Laboratory-developed ELISA and IFA | Not applicable | IgG | Serum | Not reported | Not reported | Complex |
Grove et al., 2021 [24] | Roche ElecsysTM chemiluminescent immunoassay | Roche Diagnostics/Switzerland | IgM, IgG | Serum, plasma | Not reported | Not reported | Slightly complex |
David et al., 2021 [25] | Zheihang OrientGene COVID-19 IgG/IgM | Orient Gene Biotech/China | IgM, IgG | Venous blood | 5 ul | 10 min | Technically simple |
Genrui Novel Coronavirus (2019-nCoV) IgG/IgM | Genrui Biotech Inc/China | IgM, IgG | Venous blood | 10 ul | 10 min | Technically simple | |
Boson Biotech 2019-nCoV IgG/IgM | Xiamen Boson Biotech/China | IgM, IgG | Venous blood | 2 ul | 10 min | Technically simple | |
Biosynex COVID-19 BSS | Biosynex Swiss SA/Switzerland | IgM, IgG | Venous blood | 10 ul | 10 min | Technically simple | |
Shaw et al., 2021 [26] | Abbott SARS-CoV-2-2 IgG assay | Abbott Laboratories/South Africa | IgM, IgG | Whole blood | Not applicable | 30 min | Slightly complex |
Wolter et al., 2022 [27] | Wantai SARS-CoV-2 Ab ELISA | Wantai Biological Pharmacy Enterprise/China | IgM, IgG, IgA | Serum, plasma | Not reported | Not reported | Slightly complex |
Maritz et al., 2021 [28] | Semi-quantitative detection for IgG, IgM, IgA and Nab in serum | Not applicable | IgM, IgA | Serum | Not reported | Not reported | Complex |
Kwatra et al., 2022 [29] | DBS serology vs. plasma serology | Not applicable | RdRp gene S-protein | Dried blood spot, plasma | Not reported | Not reported | Slightly complex |
Irwin et al., 2021 [30] | 2019-nCoV-IgG/IgM Rapid Test | Dynamiker Biotechnology Company Ltd./China | IgM, IgG | Fingertip whole blood | 10–20 ul | 15–20 min | Technically simple |
2019-nCoV IgG/IgM Rapid Test Cassette | AllTest Biotech Company Ltd./China | IgM, IgG | Fingertip whole blood | 10–20 ul | 15–20 min | Technically simple | |
2019-nCoV Ab Test (Colloidal Gold) | Innovita Biotechnology Company Ltd./China | IgM, IgG | Fingertip whole blood | 10–20 ul | 15–20 min | Technically simple | |
Medical Diagnostech COVID-19 IgG/IgM Rapid Test | Altis Biologics (Pty) Ltd./South Africa | IgM, IgG | Fingertip whole blood | 10–20 ul | 15–20 min | Technically simple | |
Cellex qSARS-CoV-2 IgG/IgM Cassette Rapid Test | Cellex/China | IgM, IgG | Fingertip whole blood | 10–20 ul | 15–20 min | Technically simple |
Study (Author, Ref) | Assay | Reference Comparator Assay | Sample Size | Results Dependent on Time from Symptom Onset/Age | Analyte Target | Sensitivity (95% CI) | Specificity (95% CI) |
---|---|---|---|---|---|---|---|
Genotyping | |||||||
Umunnakwe et al., 2022 [14] | AllplexTM SARS-CoV-2 Variants II multiplex real-time PCR genotyping assay, Seegene (Seoul, South Korea) | Illumina MiSeq (Illumina Inc., San Diego, CA, USA), PacBio Sequel IIe (Pacific Biosciences Inc., Menlo Park, CA, USA) or Genexus Ion Torrent (Thermo Scientific, Waltham, MA, USA) platforms. | 187 | Not reported | K417N (Beta), K417T (Gamma). L452R (Delta), W152C (Epsilon) | Not reported | No cross reactivity |
RT-PCR | |||||||
Marais et al., 2020 [15] | Rapid sample preparation for RT-PCR | Standard nucleic acid purification protocol for RT-PCR | 195 | Not reported | E, N and RdRp genes | 41.7%–100% dependent on dilution factor PPA: 97.37% (92.55–99.28) NPA: 97.30% (90.67–99.52) | Not reported |
Marais et al., 2022 [16] | RT-PCR saliva and mid-turbinate swab | Allplex TM 2019-nCoV SARS-CoV-2 PCR Abbott RealTime SARS-CoV-2 or Abbott Alinity m SARS-CoV-2 (Abbott Laboratories, Chicago, IL, USA) | 453 [304 (Delta), 149 Omi-cron] | Yes | E, N and RdRp genes | Delta PPA on saliva: 73% (53–84) Omicron PPA on saliva: 96% PPA on mid-turbinate: 93% | Not reported |
FlowFlex SARS-CoV-2 N protein lateral flow assay | Allplex TM 2019-nCoV SARS-CoV-2 PCR Abbott RealTime SARS-CoV-2 or Abbott Alinity m SARS-CoV-2 (Abbott Laboratories, Chicago, IL, USA) | 372 including 30 Delta, 29 Omi-cron | Yes | N gene | Delta variant: 93% Omicron variant: 68% | Not reported | |
Omar et al., 2021 [17] | Thermocycler (Genechecker; and 2400 SARS-CoV-2 Smartchecker PCR kit | Standard RT-PCR | 315 | Not applicable | N and RdRp genes | 95% PPA: 82.4% NPA: 99.2% | 97% |
Rapid antigen testing | |||||||
Akingba et al., 2021 [18] | Abbott PanBio COVID-19 antigen RTD | Allplex TM 2019-nCoV SARS-CoV-2 PCR | 677 | Ct-dependent | N gene | 69.17% (61.44–75.80) | 99.02% (98.78–99.26) |
Majam et al., 2022 [19] | Abbott PanBio COVID-19 antigen RTD | QuantStudio 5 Real-Time PCR System, Firmware version 1.3.3) using the TaqPath SARS-CoV-2 (Thermo Fisher Scientific, Waltham, MA, USA) | 569 | Ct-dependent | N gene | 40% (30.3–50.3) PPA: 85.1% (71.7–93.8) NPA: 88.5% (85.5–91.1) | 98.5% (96.9–99.4) |
Serological testing | |||||||
Makatsa et al., 2021 [20] | Indirect in-house ELISA using recombinant plant-derived viral proteins | Euroimmun IgG S1 | 77 | Not reported | Spike protein (S1 and RBD regions) | Reactivity same for both assays PPA: 89.4% (82.18–94.39) NPA: 88.4% (80.53–93.83) | Not reported |
Gededzha et al., 2021 [21] | EUROIMMUN Anti-SARS-CoV-2 IgA and IgG | RT-qPCR | 355 | Not reported | Spike protein | IgG: 64.1% (59.1–69.0) IgA: 74.3% (69.6–78.6) | IgG: 95.2% (90.8–98.4) IgA: 84.2% (77–89.2) |
Jugwanth et al., 2022 [22] | Abbott SARS-CoV-2 IgG Architect | RT-qPCR | 526 | Not reported | Nucleocapsid N protein | 69.5% (64.7–74.1) | 95% (89.9–98) |
Abbott SARS-CoV-2 Alinity | RT-qPCR | 425 | Not reported | Nucleocapsid N protein | 64.8% (59.4–69.9) | 90.3% (82.9–95.2) | |
Abbott SARS-CoV-2 IgG Architect | In-house ELISA | 197 | Not reported | Spike protein | 94.7% (88.8–98) | 88.1% (79.2–94.1) | |
Abbott SARS-CoV-2 Alinity | In-house ELISA | 191 | Not reported | Spike protein | 92.5% (85.8–96.7) | 91.7% (83.6–96.6) | |
Matefo et al., 2022 [23] | Laboratory-developed ELISA and IFA assay | ElecsysTM Anti-SARS-CoV-2 ELISA and COVID-19 IgG/IgM Orient Gene | 48 | Not reported | Spike protein | ELISA: 100% IFA: 98.8% PPA for ELISA: 92.1% NPA for IFA: 91.0% | ELISA: 96% IFA: 100% |
Grove et al., 2021 [24] | Roche ElecsysTM chemiluminescent immunoassay | RT-PCR | 434 | Sensitivity increased >14 days | Nucleocapsid N protein | 65.2% (59.57–70.46) | 100% (97.07–100) |
David et al., 2021 [25] | Zheihang OrientGene COVID-19 IgG/IgM | IgG versus PCR and IgG versus formal serology | 150 | Not reported | Spike protein | IgG versus PCR: 90.7% (81.7–96.2) IgG versus Formal Serology: 100% (94.5–100) | IgG versus PCR: 100% (95.2–100) IgG versus Formal Serology: 96.5% (90.0–99.3) |
Genrui Novel Coronavirus (2019-nCoV) IgG/IgM | IgG versus PCR and IgG versus formal serology | 150 | Not reported | Not reported | IgG versus PCR: 89.3% (80.1–95.3) IgG vs. Formal Serology: 98.5% (91.7–100) | IgG versus PCR: 97.3% (90.7–99.7) IgG versus Formal Serology: 94.1% (86.8–98.1) | |
Boson Biotech 2019-nCoV IgG/IgM | IgG versus PCR and IgG versus formal serology | 150 | Not reported | Not reported | IgG versus PCR: 85.3% (75.3–92.4) IgG versus formal serology: 98.5% (91.7–100) | IgG versus PCR: 97.3% (90.7–99.7) IgG versus formal serology: 97.6% (91.8–99.7) | |
Biosynex COVID-19 BSS | IgG versus PCR and IgG versus formal serology | 150 | Not reported | Not reported | IgG versus PCR: 84.3% (73.6–91.9) IgG versus formal serology: 98.2% (90.4–100) | IgG versus PCR:100% (91.4–100) IgG versus formal serology: 92.7% (82.4–98.0) | |
In-house ELISA | 111 | Not reported | Spike protein | IgG: 80% (71.5–86.9) IgA: 87.8% (80.4–93.2) | IgG: 86.9% (77.8–93.3) IgA: 73.8% (63.1–82.8) | ||
Shaw et al., 2021 [26] | Abbott SARS-CoV-2 IgG assay | Not reported | 137 | Not reported | Nucleocapsid N protein | Not reported | 98.54% (94.82 -99.82) |
Wolter et al., 2022 [27] | Wantai SARS-CoV-2 Ab ELISA | ElecsysTM Anti-SARS-CoV-2 ELISA | 7479 | Not reported | Spike protein (RBD region) | 91.0% | 97.2% |
Maritz et al., 2021 [28] | Semi-quantitative detection for IgG, IgM, IgA and Nab in serum | Not applicable | Not reported | Not reported | Spike protein (S1 region) | Range 83.2%–99.7% | Range 90.5%–99.1% |
Kwatra et al., 2022 [29] | Dried blood spot sample serology vs. plasma serology | Not applicable | 16 | Not applicable | Spike protein (RBD region) | Correlation: RBD: 93.5% (81.4–97.8) S-protein: 96.5% (89.5–98.8) | Not reported |
Irwin et al., 2021 [30] | 2019-nCoV-IgG/IgM Rapid Test | Not reported | 102 | Age-dependent | Nucleocapsid N protein | IgM 67% IgG 69% | Not reported |
2019-nCoV IgG/IgM Rapid Test Cassette (whole blood, serum, or plasma), | Not reported | 102 | Age-dependent | Nucleocapsid N protein | IgM 15% IgG 65% | Not reported | |
2019-nCoV Ab Test (Colloidal Gold) | Not reported | 102 | Age-dependent | Nucleocapsid N protein | IgM 13% IgG 36% | Not reported | |
Medical Diagnostech COVID-19 IgG/IgM Rapid Test | Not reported | 102 | Age-dependent | Nucleocapsid N protein | IgM 26% IgG 66% | Not reported | |
Cellex qSARS-CoV-2 IgG/IgM Cassette Rapid Test | Not reported | 102 | Age-dependent | Nucleocapsid N protein | IgM 64% IgG 67% | Not reported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samsunder, N.; Devnarain, N.; Sivro, A.; Kharsany, A.B.M. The Performance of Diagnostic Tests for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the South African Population: A Scoping Review. Trop. Med. Infect. Dis. 2023, 8, 514. https://doi.org/10.3390/tropicalmed8120514
Samsunder N, Devnarain N, Sivro A, Kharsany ABM. The Performance of Diagnostic Tests for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the South African Population: A Scoping Review. Tropical Medicine and Infectious Disease. 2023; 8(12):514. https://doi.org/10.3390/tropicalmed8120514
Chicago/Turabian StyleSamsunder, Natasha, Nikita Devnarain, Aida Sivro, and Ayesha B. M. Kharsany. 2023. "The Performance of Diagnostic Tests for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the South African Population: A Scoping Review" Tropical Medicine and Infectious Disease 8, no. 12: 514. https://doi.org/10.3390/tropicalmed8120514
APA StyleSamsunder, N., Devnarain, N., Sivro, A., & Kharsany, A. B. M. (2023). The Performance of Diagnostic Tests for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the South African Population: A Scoping Review. Tropical Medicine and Infectious Disease, 8(12), 514. https://doi.org/10.3390/tropicalmed8120514