Testing for Drug-Related Infectious Diseases and Determinants among People Who Use Drugs in a Low-Resource Setting: A Respondent-Driven Cross-Sectional Survey
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Participants’ Sociodemographic Characteristics
3.2. Proportion of Social Structural Determinants
3.3. Proportions of Participants Who Tested for Drug-Related Infectious Diseases
3.4. Access to Drug-Related Infectious Diseases Testing among People Who Use Drugs
3.5. Determinants of Testing for Drug-Related Infectious Diseases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Office on Drugs and Crime. World Drug Report 2020. 1. Executive Summary: Impact of COVID-19. Policy Implications; United Nations Publication, Sales No. E.20.XI.6; United Nations: New York, NY, USA, 2020; 56p, Available online: https://wdr.unodc.org/wdr2020/field/WDR20_BOOKLET_1.pdf (accessed on 31 July 2022).
- Khatib, A.; Matiko, E.; Khalid, F.; Welty, S.; Ali, A.; Othman, A.; Haji, S.; Dahoma, M.; Rutherford, G. HIV and hepatitis B and C co-infection among people who inject drugs in Zanzibar. BMC Public Health 2017, 17, 917. [Google Scholar] [CrossRef] [PubMed]
- NACP. Consensus Estimates on Key Population Size and HIV Prevalence in Tanzania; National AIDS Control Programme: Dar es Salaam, Tanzania, 2014; pp. 1–34. [Google Scholar]
- Lewer, D.; Tweed, E.J.; Aldridge, R.W.; Morley, K.I. Causes of hospital admission and mortality among 6683 people who use heroin: A cohort study comparing relative and absolute risks. Drug Alcohol Depend. 2019, 204, 107525. [Google Scholar] [CrossRef] [PubMed]
- Mathers, B.M.; Degenhardt, L.; Bucello, C.; Lemon, J.; Wiessing, L.; Hickman, M. Mortality among people who inject drugs: A systematic review and meta-analysis. Bull. World Health Organ. 2013, 91, 102–123. [Google Scholar] [CrossRef] [PubMed]
- Joint United Nations Program HIV/AIDS. UNAIDS Data 2017; UNAIDS: Geneva, Switzerland, 2017; pp. 1–248. Available online: http://www.unaids.org/sites/default/files/media_asset/20170720_Data_book_2017_en.pdf (accessed on 31 July 2022).
- UNAIDS Data 2021. Available online: https://aidsinfo.unaids.org/ (accessed on 31 July 2022).
- Leyna, G.H.; Makyao, N.; Mwijage, A.; Ramadhan, A.; Likindikoki, S.; Mizinduko, M.; Leshabari, M.T.; Moen, K.; Mmbaga, E.J. HIV/HCV co-infection and associated risk factors among injecting drug users in Dar es Salaam, Tanzania: Potential for HCV elimination. Harm Reduct. J. 2019, 16, 68. [Google Scholar] [CrossRef]
- Deiss, R.G.; Rodwell, T.C.; Garfein, R.S. Tuberculosis and illicit drug use: Review and update. Clin. Infect. Dis. 2009, 48, 72–82. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report 2021; World Health Organization: Geneva, Switzerland, 2021; Available online: http://apps.who.int/iris (accessed on 31 July 2022).
- Gupta, A.; Mbwambo, J.; Mteza, I.; Shenoi, S.; Lambdin, B.; Nyandindi, C.; Doula, B.I.; Mfaume, S.; Bruce, R.D. Active case finding for tuberculosis among people who inject drugs on methadone treatment in Dar es Salaam, Tanzania. Int. J. Tuberc. Lung Dis. 2014, 18, 793–798. [Google Scholar] [CrossRef]
- Minja, L.T.; Hella, J.; Mbwambo, J.; Nyandindi, C.; Omary, U.S.; Levira, F.; Mpagama, S.; Shimwela, M.; Okuma, J.; Gagneux, S.; et al. High burden of tuberculosis infection and disease among people receiving medication-assisted treatment for substance use disorder in Tanzania. PLoS ONE 2021, 16, e0250038. [Google Scholar] [CrossRef]
- Stop TB Partnership. Key Populations Brief—People Who Use Drugs. 2016. Available online: https://stoptb.org/assets/documents/resources/publications/acsm/kp_peopleusedrugs_spreads.pdf (accessed on 31 July 2022).
- Rashti, R.; Sharafi, H.; Alavian, S.M.; Moradi, Y.; Mohamadi Bolbanabad, A.; Moradi, G. Systematic Review and Meta-Analysis of Global Prevalence of HBsAg and HIV and HCV Antibodies among People Who Inject Drugs and Female Sex Workers. Pathogens 2020, 9, 432. [Google Scholar] [CrossRef]
- Kawambwa, R.H.; Majigo, M.V.; Mohamed, A.A.; Matee, M.I. High prevalence of human immunodeficiency virus, hepatitis B and C viral infections among people who inject drugs: A potential stumbling block in the control of HIV and viral hepatitis in Tanzania. BMC Public Health 2020, 20, 177. [Google Scholar] [CrossRef]
- Arbuthnot, P.; Kew, M. Hepatitis B virus and hepatocellular carcinoma. Int. J. Exp. Pathol. 2001, 82, 77–100. [Google Scholar] [CrossRef]
- Donato, F.; Boffetta, P.; Puoti, M. A meta-analysis of epidemiological studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma. Int. J. Cancer 1998, 75, 347–354. [Google Scholar] [CrossRef]
- Brookmeyer, K.A.; Haderxhanaj, L.T.; Hogben, M.; Leichliter, J. Sexual risk behaviors and STDs among persons who inject drugs: A national study. Prev. Med. 2019, 126, 105779. [Google Scholar] [CrossRef]
- Boothe, M.A.S.; Comé, C.; Semá Baltazar, C.; Chicuecue, N.; Seleme, J.; Chitsondzo Langa, D.; Sathane, I.; Raymond, H.F.; Fazito, E.; Temmerman, M.; et al. High burden of self-reported sexually transmitted infections among key populations in Mozambique: The urgent need for an integrated surveillance system. BMC Infect. Dis. 2020, 20, 636. [Google Scholar] [CrossRef]
- Voth, M.L.; Akbari, R.P. Sexually transmitted proctitides. Clin. Colon Rectal Surg. 2007, 20, 58–63. [Google Scholar] [CrossRef]
- World Health Organization. Consolidated Guidelines on HIV Prevention, Diagnosis, Treatment and Care for Key Populations; WHO: Geneva, Switzerland, 2014; 184p, Available online: http://apps.who.int/iris/bitstream/10665/128048/1/9789241507431_eng.pdf?ua=1 (accessed on 31 July 2022).
- WHO. HIV Prevention, Diagnosis, Treatment, and Care for Key Populations—2016 Update. Available online: http://apps.who.int/iris/bitstream/handle/10665/246200/9789241511124-eng.pdf (accessed on 31 July 2022).
- Centers for Disease Control and Prevention. Integrated prevention services for HIV infection, viral hepatitis, sexually transmitted diseases, and tuberculosis for persons who use drugs illicitly: Summary guidance from CDC and the US Department of Health and Human Services. MMWR Recomm. Rep. 2012, 61, 1–40. [Google Scholar]
- Tanzania Ministry of Health Community Development Gender Elderly and Children; National AIDS Control Program (NACP). Tanzania National Guideline for Comprehensive Package of HIV Interventions for Key and Vulnerable Populations; NACP: Dar es Salaam, Tanzania, 2014; Available online: https://nacp.go.tz/download/national-guideline-for-comprehensive-package-of-hiv-interventions-for-key-and-vernerable-population/ (accessed on 31 July 2022).
- Eng, C.W.; Tuot, S.; Chann, N.; Chhoun, P.; Mun, P.; Yi, S. Recent HIV testing and associated factors among people who use drugs in Cambodia: A national cross-sectional study. BMJ Open 2021, 11, e045282. [Google Scholar] [CrossRef]
- Jiang, Z.; Xiu, C.; Yang, J.; Zhang, X.; Liu, M.; Chen, X.; Liu, D. HIV test uptake and related factors amongst heterosexual drug users in Shandong province, China. PLoS ONE 2018, 13, e0204489. [Google Scholar] [CrossRef]
- Du, J.; Lombardi, C.; Evans, E.; Jiang, H.; Zhao, M.; Meng, Y.Y. A mixed methods approach to identifying factors related to voluntary HIV testing among injection drug users in Shanghai, China. Int. J. Infect. Dis. 2012, 16, e498–e503. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention. HIV Infection, Risk, Prevention, and Testing Behaviors among Persons Who Inject Drugs; HIV Surveillance Special Report 24; CDC: Atlanta, GA, USA, 2012. Available online: https://www.cdc.gov/hiv/pdf/library/reports/surveillance/cdc-hiv-surveillance-special-report-number-24.pdf (accessed on 31 July 2022).
- Mlunde, L.B.; Sunguya, B.F.; Mbwambo, J.K.; Ubuguyu, O.S.; Shibanuma, A.; Yasuoka, J.; Jimba, M. A Mismatch between High-Risk Behaviors and Screening of Infectious Diseases among People Who Inject Drugs in Dar es Salaam, Tanzania. PLoS ONE 2016, 11, e0148598. [Google Scholar] [CrossRef]
- Larney, S.; Peacock, A.; Mathers, B.M.; Hickman, M.; Degenhardt, L. A systematic review of injecting-related injury and disease among people who inject drugs. Drug Alcohol Depend. 2017, 171, 39–49. [Google Scholar] [CrossRef]
- Runels, T.; Ragan, E.J.; Ventura, A.S.; Winter, M.R.; White, L.F.; Horsburgh, C.R.; Samet, J.H.; Saitz, R.; Jacobson, K.R. Testing and treatment for latent tuberculosis infection in people living with HIV and substance dependence: A prospective cohort study. BMJ Open 2022, 12, e058751. [Google Scholar] [CrossRef]
- Mmbaga, E.J.; Leyna, G.H.; Leshabari, M.T.; Tersbøl, B.; Lange, T.; Makyao, N.; Moen, K.; Meyrowitsch, D.W. Effectiveness of health care workers and peer engagement in promoting access to health services among population at higher risk for HIV in Tanzania (KPHEALTH): Study protocol for a quasi experimental trial. BMC Health Serv. Res. 2019, 19, 801. [Google Scholar] [CrossRef]
- National Bureau of Statistics. 2020 Tanzania in Figures; Ministry of Finance and Planning: Dodoma, Tanzania, 2021; pp. 1–88. Available online: https://www.nbs.go.tz/index.php/en/tanzania-in-figures/641-tanzania-in-figures-2020 (accessed on 31 July 2022).
- United Nations Office of Drug and Crime. Drug Trafficking Patterns to and from Eastern Africa. 2022. Available online: http://www.unodc.org/easternafrica/en/illicit-drugs/drug-trafficking-patterns.html (accessed on 31 July 2022).
- Ndayongeje, J.; Msami, A.; Laurent, Y.I.; Mwankemwa, S.; Makumbuli, M.; Ngonyani, A.M.; Tiberio, J.; Welty, S.; Said, C.; Morris, M.D.; et al. Illicit Drug Users in the Tanzanian Hinterland: Population Size Estimation Through Key Informant-Driven Hot Spot Mapping. AIDS Behav. 2018, 22 (Suppl. 1), 4–9. [Google Scholar] [CrossRef]
- Ratliff, E.A.; McCurdy, S.A.; Mbwambo, J.K.K.; Lambdin, B.H.; Voets, A.; Pont, S.; Maruyama, H.; Kilonzo, G.P. An Overview of HIV Prevention Interventions for People Who Inject Drugs in Tanzania. Adv. Prev. Med. 2013, 2013, 183187. [Google Scholar] [CrossRef]
- Heckathorn, D.D. Respondent-Driven Sampling: A New Approach to the Study of Hidden Populations. Soc. Probl. 1997, 44, 174–199. [Google Scholar] [CrossRef]
- Straus, M.A.; Hamby, S.L.; Boney-Mccoy, S.; Sugarman, D.B. The Revised Conflict Tactics Scales (CTS2): Development and Preliminary Psychometric Data. J. Fam. Issues 1996, 17, 283–316. [Google Scholar] [CrossRef]
- Sarason, I.G.; Sarason, B.R.; Shearin, E.N.; Pierce, G.R. A Brief Measure of Social Support: Practical and Theoretical Implications. J. Soc. Pers. Relatsh. 1987, 4, 497–510. [Google Scholar] [CrossRef]
- Smith, L.R.; Earnshaw, V.A.; Copenhaver, M.M.; Cunningham, C.O. Substance use stigma: Reliability and validity of a theory-based scale for substance-using populations. Drug Alcohol Depend. 2016, 162, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Niccolai, L.M.; Toussova, O.V.; Verevochkin, S.V.; Barbour, R.; Heimer, R.; Kozlov, A.P. High HIV prevalence, suboptimal HIV testing, and low knowledge of HIV-positive serostatus among injection drug users in St. Petersburg, Russia. AIDS Behav. 2010, 14, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Frimpong, J.A.; Guerrero, E.G.; Kong, Y.; Tsai, G. Correlates of HIV testing and receipt of test results in addiction health services in Los Angeles County. Subst. Abuse Treat. Prev. Policy 2015, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Likindikoki, S.L.; Mmbaga, E.J.; Leyna, G.H.; Moen, K.; Makyao, N.; Mizinduko, M.; Mwijage, A.I.; Faini, D.; Leshabari, M.T.; Meyrowitsch, D.W. Prevalence and risk factors associated with HIV-1 infection among people who inject drugs in Dar es Salaam, Tanzania: A sign of successful intervention? Harm Reduct. J. 2020, 17, 18. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health, Community Development, Gender, Elderly and Children (MoHCDGEC); Ministry of Health (MoH). Tanzania Demographic and Health Survey and Malaria Indicator Survey (TDHS-MIS) 2015–16; National Bureau of Statistics (NBS): Dar es Salaam, Tanzania; Office of the Chief Government Statistician (OCGS): Zanzibar, Tanzania; ICF: Rockville, MD, USA, 2016; Available online: https://dhsprogram.com/pubs/pdf/fr321/fr321.pdf (accessed on 31 July 2022).
- Armenta, R.F.; Collins, K.M.; Strathdee, S.A.; Bulterys, M.A.; Munoz, F.; Cuevas-Mota, J.; Chiles, P.; Garfein, R.S. Mycobacterium tuberculosis infection among persons who inject drugs in San Diego, California. Int. J. Tuberc. Lung Dis. 2017, 21, 425–431. [Google Scholar] [CrossRef]
- Ministry of Health, Community Development, Gender, Elderly & Children; National AIDS Control Programme—NACP. National Guidelines for Management of Sexually Transmitted and Reproductive Tract Infections. Available online: https://nacp.go.tz/download/national-guidelines-for-management-of-sexually-transmitted-and-reproductive-tract-infections/ (accessed on 31 July 2022).
- Thinh, V.T.; Phuong, D.T.; Hoa, V.D.; Giang, L.M. Reported Low Uptake of HCV Testing among People who Inject Drugs in Urban Vietnam. BioMed Res. Int. 2020, 2020, 3701379. [Google Scholar] [CrossRef]
- Ferraro, C.F.; Stewart, D.E.; Grebely, J.; Tran, L.T.; Zhou, S.; Puca, C.; Hajarizadeh, B.; Larney, S.; Santo, T., Jr.; Higgins, J.P.T.; et al. Association between opioid agonist therapy use and HIV testing uptake among people who have recently injected drugs: A systematic review and meta-analysis. Addiction 2021, 116, 1664–1676. [Google Scholar] [CrossRef]
- Matsuzaki, M.; Vu, Q.M.; Gwadz, M.; Delaney, J.A.C.; Kuo, I.; Trejo, M.E.P.; Cunningham, W.E.; Cunningham, C.O.; Christopoulos, K. Perceived access and barriers to care among illicit drug users and hazardous drinkers: Findings from the Seek, Test, Treat, and Retain data harmonization initiative (STTR). BMC Public Health 2018, 18, 366. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Overall n = 599 | Dar es Salaam n = 311 | Tanga n = 288 | # p-Value | |||
---|---|---|---|---|---|---|---|
n (%) ‡ | % † | n (%) ‡ | % † | n (%) ‡ | % † | ||
Age (years) | 36.76 (7.84) | 35.61 (7.49) | 38.00 (8.02) | <0.001 ** | |||
Age categories | 0.028 * | ||||||
<25 | 40 (6.68) | (6.34) | 26 (8.36) | 7.89 | 14 (4.86) | 4.99 | |
25–34 | 258 (43.07) | (43.95) | 146 (46.95) | 49.67 | 112 (38.89) | 39.03 | |
35–44 | 216 (36.06) | (34.58) | 101 (32.48) | 30.94 | 115 (39.93) | 37.72 | |
45+ | 85 (14.19) | (15.13) | 38 (12.22) | 11.49 | 47 (16.32) | 18.26 | |
Sex | 0.875 | ||||||
Male | 587 (98.00) | (97.69) | 304 (97.75) | 97.33 | 283 (98.26) | 97.99 | |
Female | 12 (2.00) | (2.31) | 7 (2.25) | 2.27 | 5 (1.74) | 2.01 | |
Education status | 0.878 | ||||||
None | 27 (4.51) | (5.13) | 15 (4.82) | 5.64 | 12 (4.17) | 4.68 | |
Primary | 451 (75.29) | (73.97) | 235 (75.56) | 73.63 | 216 (75.00) | 74.27 | |
Secondary+ | 121 (20.20) | (20.90) | 61 (19.62) | 20.73 | 60 (20.83) | 21.05 | |
Income status (Tshs) | 0.181 | ||||||
<50,000 | 153 (25.54) | (26.43) | 69 (22.19) | 19.83 | 84 (29.17) | 32.12 | |
50,001–120,000 | 59 (9.85) | (9.15) | 29 (9.32) | 9.01 | 30 (10.42) | 9.27 | |
120,001–200,000 | 108 (18.03) | (17.35) | 62 (19.94) | 20.87 | 46 (15.97) | 14.32 | |
>200,000 | 279 (46.58) | (47.07) | 151 (48.55) | 50.30 | 128 (44.44) | 44.29 | |
Marital status | |||||||
Single | 263 (43.91) | (43.60) | 163 (52.41) | 52.80 | 67 (34.70) | 35.69 | <0.001 ** |
Married | 125 (20.87) | (20.76) | 58 (18.65) | 18.90 | 100 (23.30) | 22.36 | |
Separated/divorced | 211 (35.2) | (35.6) | 90 (28.9) | 28.3 | 121 (42.0) | 42.0 | |
Residence Status | <0.001 ** | ||||||
Homeless | 64 (10.7) | (9.6) | 49 (15.8) | 14.9 | 15 (5.2) | 5.0 | |
Living with someone | 295 (49.3) | (49.4) | 154 (49.5) | 50.2 | 141 (49.0) | 48.7 | |
Rent/own a house | 240 (40.0) | (41.0) | 108 (34.7) | 34.9 | 132 (45.8) | 46.3 | |
Physical violence | |||||||
Mean (SD), range = 0–45 | 12.1 (9.7) | 12.0 (9.7) | 12.2 (9.8) | 0.784 | |||
None | 353 (58.9) | (58.7) | 186 (59.8) | 58.91 | 167 (58.0) | 58.54 | 0.818 |
Mild only | 178 (29.7) | (30.3) | 92 (29.6) | 31.80 | 86 (29.9) | 28.92 | |
Severe | 68 (11.4) | (11.0) | 33 (10.6) | 9.30 | 35 (12.1) | 12.54 | |
Sexual violence | |||||||
Mean (SD), range = 0–24 | 2.3 (3.7) | 2.1 (3.5) | 2.6 (3.8) | 0.055 | |||
None | 530 (88.5) | (88.9) | 280 (90.0) | 91.6 | 250 (86.8) | 86.55 | 0.463 |
Mild only | 53 (8.8) | (8.5) | 24 (7.7) | 6.7 | 29 (10.1) | 10.01 | |
Severe | 16 (2.7) | (2.6) | 7 (2.3) | 1.7 | 9 (3.1) | 3.44 | |
Enacted stigma | |||||||
Mean (SD), range 0–30 | 13.7 (6.0) | 14.0 (6.0) | 13.3 (5.9) | 0.117 | |||
None | 106 (17.7) | (17.8) | 52 (16.7) | 16.3 | 54 (18.7) | 19.2 | 0.036 |
Mild to moderate | 380 (64.4) | (63.7) | 188 (60.5) | 59.5 | 192 (66.7) | 67.2 | |
Severe | 113 (18.9) | (18.5) | 71 (22.8) | 24.2 | 42 (14.6) | 13.6 | |
Internalized stigma | |||||||
Mean (SD), range 0–24 | 19.2 (7.0) | 18.8 (7.2) | 19.6 (6.8) | 0.138 | |||
None | 37 (6.2) | (6.0) | 18 (5.8) | 5.39 | 19 (6.6) | 6.5 | 0.031 |
Mild to moderate | 228 (38.1) | (39.5) | 134 (43.1) | 42.04 | 94 (32.6) | 37.4 | |
Severe | 334 (55.7) | (54.5) | 159 (51.1) | 5.39 | 175 (60.8) | 56.1 | |
Ever apprehended | 0.844 | ||||||
Yes | 574 (95.83) | (95.5) | 299 (96.1) | 95.7 | 275 (95.5) | 95.5 | |
No | 25 (4.2) | (4.4) | 12 (3.9) | 4.3 | 13 (4.5) | 4.5 | |
Ever sentenced | <0.001 | ||||||
Yes | 243 (40.6) | (41.4) | 100 (32.2) | 29.7 | 143 (49.6) | 51.4 | |
No | 356 (59.4) | (58.6) | 211 (67.8) | 70.3 | 145 (50.4) | 48.6 | |
Jailed/remanded past month | <0.001 | ||||||
Yes | 414 (69.1) | (68.0) | 237 (76.2) | 76.0 | 177 (61.5) | 61.2 | |
No | 185 (30.9) | (32.0) | 74 (23.3) | 24.0 | 111 (38.5) | 38.8 | |
Ever heard about CHIP | 0.069 | ||||||
Yes | 263 (43.9) | (45.9) | 125 (40.2) | 40.28 | 138 (47.92) | 50.74 | |
No | 336 (56.1) | (54.1) | 186 (59.8) | 59.72 | 150 (53.08) | 49.26 | |
Appropriate treatment | 0.098 | ||||||
Yes | 536 (89.48) | (90.31) | 285 (91.6) | 92.1 | 251 (87.2) | 88.8 | |
No | 63 (10.52) | (9.69) | 26 (8.4) | 7.9 | 37 (12.8) | 11.2 | |
HCW are friendly | 0.976 | ||||||
Yes | 527 (88.0) | (88.8) | 273 (87.8) | 87.8 | 254 (88.2) | 89.7 | |
No | 72 (12.0) | (11.2) | 38 (12.2) | 12.2 | 34 (11.8) | 10.3 | |
HCW are supportive | 0.823 | ||||||
Yes | 538 (89.8) | (90.4) | 278 (89.4) | 88.5 | 260 (90.3) | 92.1 | |
No | 61 (10.2) | (9.6) | 33 (10.6) | 11.5 | 28 (9.7) | 7.9 | |
Delays at the health facility | 0.785 | ||||||
Yes | 204 (34.1) | (32.2) | 108 (34.7) | 34.4 | 96 (33.3) | 30.3 | |
No | 395 (65.9) | (67.8) | 203 (65.3) | 65.6 | 192 (66.7) | 69.7 | |
Financial difficulties | 0.174 | ||||||
Yes | 324 (54.1) | (55.0) | 177 (56.9) | 57.6 | 147 (51.0) | 53.1 | |
No | 275 (45.9) | (45.0) | 134 (46.1) | 42.4 | 141 (49.0) | 46.9 | |
Social supporters | |||||||
One | 245 (40.9) | (40.7) | 139 (44.7) | 43.9 | 106 (36.8) | 38.0 | <0.001 |
More than one | 354 (59.1) | (59.3) | 172 (55.3) | 56.1 | 182 (63.2) | 62.0 |
Variable | Overall n = 599 | Study Site | p-Value # | |
---|---|---|---|---|
Dar es Salaam n = 311 | Tanga n = 288 | |||
Yes (%) | Yes (%) | Yes (%) | ||
Reported tested for: | ||||
HIV | 450 (75.1) | 243 (78.1) | 207 (71.9) | 0.094 |
TB | 243 (40.6) | 162 (52.1) | 81 (28.1) | <0.001 |
STIs | 231 (38.6) | 127 (40.8) | 104 (36.1) | 0.270 |
Viral Hepatitis | 49 (8.2) | 37 (11.9) | 12 (4.2) | 0.001 |
Predictors | HIV | TB | STIs | Hepatitis |
---|---|---|---|---|
UOR (95% CI) | UOR (95% CI) | UOR (95% CI) | UOR (95% CI) | |
Age categories | ||||
<25 | Ref | Ref | Ref | Ref |
25–34 | 0.67 (0.33–1.38) | 1.00 (0.51–1.98) | 1.61 (0.82–3.14) | 1.80 (0.41–6.07) |
35–44 | 0.73 (0.35–1.51) | 1.01 (0.51–2.01) | 1.39 (0.71–2.75) | 1.03 (0.24–3.32) |
45+ | 0.52 (0.22–1.21) | 0.82 (0.38–1.77) | 1.36 (0.64–2.89) | 0.94 (0.19–3.65) |
Education status | ||||
None | Ref | Ref | Ref | Ref |
Primary | 0.82 (0.35–1.93) | 0.44 (0.17–1.11) | 0.56 (0.23–1.35) | 1.12 (0.25–4.97) |
Secondary+ | 0.62 (0.24–1.58) | 0.30 (0.11–0.79) * | 0.50 (0.19–1.26) | 0.49 (0.11–2.26) |
Income status (Tshs) | ||||
<50,000 | Ref | Ref | Ref | Ref |
50,001–120,000 | 1.94 (0.99–3.77) | 1.30 (0.69–2.42) | 0.92 (0.49–1.69) | 0.76 (0.25–2.31) |
120,001–200,000 | 1.66 (0.95–2.93) | 0.97 (0.59–1.59) | 1.07 (0.64–1.77) | 1.01 (0.37–2.74) |
>200,000 | 1.13 (0.69–1.82) | 1.07 (0.72–1.60) | 0.99 (0.66–1.49) | 0.65 (0.31–1.39) |
Residence Status | ||||
Homeless | Ref | Ref | Ref | Ref |
Living with someone | 2.08 (1.04–4.17) ** | 1.40 (0.81–2.41) | 0.87 (0.49–1.53) | 1.00 (0.37–2.74) |
Rent/own a house | 1.24 (0.60–2.54) | 1.26 (0.72–2.19) | 0.76 (0.43–1.35) | 0.88 (0.32–2.44) |
Marital status | ||||
Single | Ref | Ref | Ref | Ref |
Married | 0.78 (0.47–1.31) | 1.12 (0.72–1.72) | 0.46 (0.29–0.71) ** | 0.57 (0.26–1.26) |
Separated/divorced | 1.10 (0.73–1.67) | 1.09 (0.75–1.57) | 0.90 (0.62–1.33) | 0.52 (0.26–1.03) |
Physical violence | ||||
None | Ref | Ref | Ref | Ref |
Mild only | 0.93 (0.61–1.41) | 1.13 (0.78–1.63) | 0.91 (0.63–1.32) | 1.45 (0.69–3.05) |
Severe | 0.67 (0.35–1.28) | 0.72 (0.43–1.22) | 0.75 (0.44–1.26) | 0.45 (0.21–0.95) ** |
Sexual violence | ||||
None | Ref | Ref | Ref | Ref |
Mild only | 1.34 (0.72–2.49) | 1.49 (0.79–2.91) | 0.46 (0.25–0.85) *** | 1.08 (0.37–4.32) |
Severe | 1.04 (0.33–3.27) | 0.91 (0.29–2.91) | 0.19 (0.04–0.63) *** | 0.62 (0.14–5.79) |
Enacted stigma | ||||
None | Ref | Ref | Ref | Ref |
Mild to moderate | 0.76 (0.47–1.23) | 0.76 (0.49–1.19) | 1.00 (0.64–1.57) | 0.80 (0.36–1.79) |
Severe | 0.76 (0.42–1.39) | 0.56 (0.33–0.97) * | 0.82 (0.48–1.41) | 1.46 (0.49–4.34) |
Internalized stigma | ||||
None | Ref | Ref | Ref | Ref |
Mild to moderate | 0.39 (0.19–0.82) * | 0.65 (0.28–1.42) | 1.08 (0.49–2.32) | 0.67 (0.07–2.99) |
Severe | 0.41 (0.21–0.83) * | 0.72 (0.32–1.54) | 1.09 (0.51–2.31) | 0.60 (0.07–2.26) |
Ever apprehended | ||||
No | Ref | Ref | Ref | Ref |
Yes | 0.48 (0.19–1.22) | 0.82 (0.31–2.00) | 0.61 (0.21–1.56) | 2.45 (0.14–1.87) |
Ever sentenced | ||||
No | Ref | Ref | Ref | Ref |
Yes | 0.69 (0.48–1.03) | 1.02 (0.73–1.42) | 0.69 (0.50–0.98) ** | 1.19 (0.63–2.32) |
Jailed/remanded past 30 days | ||||
No | Ref | Ref | Ref | Ref |
Yes | 0.59 (0.40–0.87) ** | 0.69 (0.48–0.99) * | 0.61 (0.43–0.89) *** | 1.61 (0.88–2.93) |
Ever heard about CHIP | ||||
No | Ref | Ref | Ref | Ref |
Yes | 1.78 (0.81–1.71) | 1.34 (0.96–1.86) | 1.35 (0.97–1.88) | 2.60 (1.41–4.79) * |
Treatment is appropriate | ||||
No | Ref | Ref | Ref | Ref |
Yes | 2.36 (1.37–4.05) ** | 2.61 (1.41–4.84) *** | 2.80 (1.004–3.22) * | 1.35 (0.47–3.89) |
Providers are friendly | ||||
No | Ref | Ref | Ref | Ref |
Yes | 1.86 (1.10–3.13) ** | 1.53 (0.90–2.58) | 0.83 (0.49–1.39) | 1.02 (0.42–2.49) |
Providers are supportive | ||||
No | Ref | Ref | Ref | Ref |
Yes | 1.98 (1.14–3.45) * | 2.05 (1.13–3.72) ** | 1.57 (0.88–2.79) | 1.30 (0.45–3.75) |
Delays at the health facility | ||||
No | Ref | Ref | Ref | Ref |
Yes | 1.01 (0.68–1.49) | 0.99 (0.70–1.40) | 0.82 (0.58–1.16) | 1.07 (0.57–1.99) |
Financial difficulties | ||||
No | Ref | Ref | Ref | Ref |
Yes | 0.55 (0.39–0.80) *** | 0.70 (0.51–0.98) ** | 0.61 (0.44–0.86) *** | 0.44 (0.22–0.87) ** |
Social supporters | One | |||
One | Ref | Ref | Ref | Ref |
More than one | 1.16 (0.79–1.69) | 1.21 (0.87–1.68) | 0.88 (0.63–1.23) | 1.09 (0.60–1.97) |
Predictors | HIV | TB | STIs | Viral Hepatitis |
---|---|---|---|---|
AOR (95% CI) | AOR (95% CI) | AOR (95% CI) | AOR (95% CI) | |
Age | ||||
<25 | NA | NA | Ref | NA |
25–34 | NA | NA | 0.51 (0.25–1.02) | NA |
35–44 | NA | NA | 0.53 (0.26–1.10) | NA |
45+ | NA | NA | 0.57 (0.25–1.29) | NA |
Residence Status | ||||
Homeless | Ref | NA | NA | NA |
Living with someone | 2.18 (1.09–4.68) * | NA | NA | NA |
Rent/own a house | 1.31 (0.64–2.91) | NA | NA | NA |
Marital status | ||||
Single | NA | NA | NA | Ref |
Married | NA | NA | 2.31 (1.45–3.72) *** | 1.78 (0.89–3.67) |
Separated/divorced | NA | NA | 1.15 (0.75–1.74) | 1.69 (0.74–3.82) |
Physical violence | ||||
None | Ref | Ref | NA | Ref |
Mild only | 0.99 (0.62–1.56) | 0.81 (0.55–1.20) | NA | 0.83 (0.36–1.77) |
Severe | 0.82 (0.39–1.64) | 1.05 (0.59–1.87) | NA | 2.16 (0.93–4.78) |
Sexual violence | ||||
None | NA | NA | Ref | NA |
Mild only | NA | NA | 2.39 (1.28–4.53) ** | NA |
Severe | NA | NA | 6.20 (1.99–23.83) ** | NA |
Enacted stigma | ||||
None | NA | Ref | NA | NA |
Mild to moderate | NA | 1.31 (0.83–2.10) | NA | NA |
Severe | NA | 1.90 (1.06–3.42) * | NA | NA |
Internalized stigma | ||||
None | Ref | NA | NA | NA |
Mild to moderate | 0.44 (0.21–0.95) * | NA | NA | NA |
Severe | 0.44 (0.22 -0.94) * | NA | NA | NA |
Ever apprehended | ||||
No | Ref | NA | NA | Ref |
Yes | 0.9 1 (0.36–2.39) | NA | NA | 0.45 (0.14–1.8) |
Ever sentenced | ||||
No | Ref | NA | Ref | NA |
Yes | 0.73 (0.47–1.11) | NA | 0.88 (0.61–1.28) | NA |
Jailed/remanded past 30 days | ||||
No | Ref | Ref | Ref | Ref |
Yes | 0.70 (0.45–1.09) | 0.73 (0.50–1.06) | 0.64 (0.43–0.95) * | 0.65 (0.34–1.29) |
Ever heard about CHIP | ||||
No | NA | Ref | Ref | Ref |
Yes | NA | 1.26 (0.90–1.77) | 1.29 (0.91–1.83) | 2.59 (1.40–4.94) ** |
Treatment is appropriate | ||||
No | Ref | Ref | Ref | NA |
Yes | 2.18 (1.05–4.46) * | 2.29 (1.10–5.06) * | 2.23 (1.03–5.07) * | NA |
Providers are supportive | ||||
No | Ref | Ref | Ref | NA |
Yes | 1.33 (0.62–2.78) | 1.36 (0.65- 2.91) | 1.25 (0.58–2.75) | NA |
Financial difficulties | ||||
No | Ref | Ref | Ref | Ref |
Yes | 0.60 (0.40–0.89) * | 0.74 (0.53–1.05) | 0.66 (0.47–0.94) * | 0.48 (0.24–0.92) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Likindikoki, S.L.; Mmbaga, E.J.; Mizinduko, M.; Alexander, M.; Adams, L.V.; Horsburgh, R., Jr.; Moen, K.; Leyna, G.; Lange, T.; Tersbøl, B.P.; et al. Testing for Drug-Related Infectious Diseases and Determinants among People Who Use Drugs in a Low-Resource Setting: A Respondent-Driven Cross-Sectional Survey. Trop. Med. Infect. Dis. 2022, 7, 213. https://doi.org/10.3390/tropicalmed7090213
Likindikoki SL, Mmbaga EJ, Mizinduko M, Alexander M, Adams LV, Horsburgh R Jr., Moen K, Leyna G, Lange T, Tersbøl BP, et al. Testing for Drug-Related Infectious Diseases and Determinants among People Who Use Drugs in a Low-Resource Setting: A Respondent-Driven Cross-Sectional Survey. Tropical Medicine and Infectious Disease. 2022; 7(9):213. https://doi.org/10.3390/tropicalmed7090213
Chicago/Turabian StyleLikindikoki, Samuel Lazarus, Elia J. Mmbaga, Mucho Mizinduko, Mwijage Alexander, Lisa V. Adams, Robert Horsburgh, Jr., Kåre Moen, Germana Leyna, Theis Lange, Britt P. Tersbøl, and et al. 2022. "Testing for Drug-Related Infectious Diseases and Determinants among People Who Use Drugs in a Low-Resource Setting: A Respondent-Driven Cross-Sectional Survey" Tropical Medicine and Infectious Disease 7, no. 9: 213. https://doi.org/10.3390/tropicalmed7090213
APA StyleLikindikoki, S. L., Mmbaga, E. J., Mizinduko, M., Alexander, M., Adams, L. V., Horsburgh, R., Jr., Moen, K., Leyna, G., Lange, T., Tersbøl, B. P., Leshabari, M., & Meyrowitsch, D. W. (2022). Testing for Drug-Related Infectious Diseases and Determinants among People Who Use Drugs in a Low-Resource Setting: A Respondent-Driven Cross-Sectional Survey. Tropical Medicine and Infectious Disease, 7(9), 213. https://doi.org/10.3390/tropicalmed7090213