The Effect of Artemether–Lumefantrine Combined with a Single Dose of Primaquine on Plasmodium falciparum Gametocyte Clearance and Post-Treatment Infectivity to Anopheles arabiensis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design and Period
2.3. Study Population and Inclusion/Exclusion Criteria
Operational Definitions
2.4. Sample Size Determination
- n = required sample size per group;
- Zα/2 = 1.96 for a 95% confidence level;
- Zβ = 0.84 for 80% power;
- P1 = gametocyte prevalence reduction in the AL group = 0.833;
- P2 = gametocyte prevalence reduction in the AL + PQ group = 1.0.
2.5. Sampling Technique and Data Collection
2.6. Parasitological Assessment
2.6.1. Blood Film Examination
2.6.2. Molecular Confirmation of Recurrent Plasmodium Infections
Nested PCR Amplification
Agarose Gel Electrophoresis
2.6.3. Hematocrit Determination
2.7. Treatment and Follow-Up
2.8. Study Participant Withdrawal
2.9. Classification of Treatment Outcomes
2.10. Assessment of Adverse Events and Follow-Up
2.11. Mosquito Infectivity Testing
2.12. Anopheles Mosquito-Rearing Membrane Feeding Assay
2.12.1. Anopheles Mosquito Rearing
2.12.2. Anopheles Mosquito Membrane Feeding Assay and Dissection
2.13. Data Quality Control
2.14. Outcomes
2.15. Data Management and Analysis
2.16. Ethics Approval and Consent to Participate
3. Result
3.1. Baseline Characteristics, Enrollment, and Follow-Up of Study Participants
3.2. Gametocyte Density and Prevalence Post Treatment
Adverse Events and Recurrent Malaria
3.3. Host Infectivity to An. arabiensis Mosquitoes
3.4. Gametocyte Density and Infectivity to An. arabiensis Mosquitoes
4. Discussion
5. Limitations and Operational Considerations of the Study
6. Implications for Malaria Elimination
7. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- WHO. World Malaria Report 2024: Addressing Inequity in the Global Malaria Response; World Health Organization: Geneva, Switzerland, 2024; Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2024 (accessed on 11 December 2024).
- WHO. World Malaria Report 2025: Addressing the Threat of Antimalarial Drug Resistance; World Health Organization: Geneva, Switzerland, 2025; Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2025 (accessed on 4 December 2025).
- Gonçalves, B.P.; Tiono, A.B.; Ouédraogo, A.; Guelbéogo, W.M.; Bradley, J.; Nebie, I.; Siaka, D.; Lanke, K.; Eziefula, A.C.; Diarra, A.; et al. Single low dose primaquine to reduce gametocyte carriage and Plasmodium falciparum transmission after artemether-lumefantrine in children with asymptomatic infection: A randomised, double-blind, placebo-controlled trial. BMC Med. 2016, 14, 40. [Google Scholar] [CrossRef]
- Balikagala, B.; Fukuda, N.; Ikeda, M.; Katuro, O.T.; Tachibana, S.-I.; Yamauchi, M.; Opio, W.; Emoto, S.; Anywar, D.A.; Kimura, E.; et al. Evidence of artemisinin-resistant malaria in Africa. N. Engl. J. Med. 2021, 385, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Takyi, A.; Soma, A.; Przybylska, M.; Harriss, E.; Barnes, K.I.; Dahal, P.; Guérin, P.J.; Stepniewska, K.; Carrara, V.I. Efficacy of artemisinin-based combination therapy (ACT) in people living with HIV (PLHIV) diagnosed with uncomplicated Plasmodium falciparum malaria in Africa: A WWARN systematic review. Malar. J. 2025, 24, 153. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Report on Antimalarial Drug Efficacy, Resistance and Response: 10 Years of Surveillance (2010–2019); World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Conrad, M.D.; Rosenthal, P.J. Antimalarial drug resistance in Africa: The calm before the storm? Lancet Infect. Dis. 2019, 19, e338–e351. [Google Scholar] [CrossRef] [PubMed]
- Conrad, M.D.; LeClair, N.; Arinaitwe, E.; Wanzira, H.; Kakuru, A.; Bigira, V.; Muhindo, M.; Kamya, M.R.; Tappero, J.W.; Greenhouse, B.; et al. Comparative impacts over 5 years of artemisinin-based combination therapies on Plasmodium falciparum polymorphisms that modulate drug sensitivity in Ugandan children. Lancet Infect. Dis. 2014, 210, 344–353. [Google Scholar] [CrossRef]
- Kakuru, A.; Achan, J.; Muhindo, M.K.; Ikilezi, G.; Arinaitwe, E.; Mwangwa, F.; Ruel, T.; Clark, T.D.; Charlebois, E.; Rosenthal, P.J.; et al. Artemisinin-based combination therapies are efficacious and safe for treatment of uncomplicated malaria in HIV-infected Ugandan children. Clin. Infect. Dis. 2014, 59, 446–453. [Google Scholar] [CrossRef]
- Li, J.; Docile, H.J.; Fisher, D.; Pronyuk, K.; Zhao, L. Current status of malaria control and elimination in Africa: Epidemiology, diagnosis, treatment, progress and challenges. J. Epidemiol. Glob. Health 2024, 14, 561–579. [Google Scholar] [CrossRef]
- Aweeka, F.T.; German, P.I. Clinical pharmacology of artemisinin-based combination therapies. Clin. Pharmacokinet. 2008, 47, 91–102. [Google Scholar] [CrossRef]
- Mahamar, A.; Smit, M.J.; Sanogo, K.; Sinaba, Y.; Niambele, S.M.; Sacko, A.; Dicko, O.M.; Diallo, M.; Maguiraga, S.O.; Sankaré, Y.; et al. Artemether–lumefantrine with or without single-dose primaquine and sulfadoxine–pyrimethamine plus amodiaquine with or without single-dose tafenoquine to reduce Plasmodium falciparum transmission: A phase 2, single-blind, randomised clinical trial in Ouelessebougou, Mali. Lancet Microbe 2024, 5, 633–644. [Google Scholar]
- Omondi, P.; Burugu, M.; Matoke-Muhia, D.; Too, E.; Nambati, E.A.; Chege, W.; Musyoka, K.B.; Thiongo, K.; Otinga, M.; Muregi, F.; et al. Gametocyte clearance in children, from western Kenya, with uncomplicated Plasmodium falciparum malaria after artemether–lumefantrine or dihydroartemisinin–piperaquine treatment. Malar. J. 2019, 18, 398. [Google Scholar] [CrossRef]
- Yu, S.; Wang, J.; Luo, X.; Zheng, H.; Wang, L.; Yang, X.; Wang, Y. Transmission-blocking strategies against malaria parasites during their mosquito stages. Front. Cell. Infect. Microbiol. 2022, 12, 820650. [Google Scholar] [CrossRef] [PubMed]
- Habtamu, K.; Getachew, H.; Abossie, A.; Demissew, A.; Tsegaye, A.; Degefa, T.; Zhong, D.; Wang, X.; Lee, M.-C.; Zhou, G.; et al. Post-treatment transmissibility of Plasmodium falciparum infections: An observational cohort study. Malar. J. 2025, 24, 87. [Google Scholar] [CrossRef] [PubMed]
- Dutta, G.; Bajpai, R.; Vishwakarma, R. Artemisinin (qinghaosu)–a new gametocytocidal drug for malaria. Chemotherapy 1989, 35, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Achan, J.; Mwesigwa, J.; Edwin, C.P.; D’alessandro, U. Malaria medicines to address drug resistance and support malaria elimination efforts. Expert Rev. Clin. Pharmacol. 2018, 11, 61–70. [Google Scholar] [CrossRef]
- WHO Malaria Policy Advisory Committee. Malaria Policy Advisory Committee to the WHO: Conclusions and recommendations of eighth biannual meeting (September 2015). Malar. J. 2016, 15, 117. [Google Scholar] [CrossRef]
- Awab, G.R.; Aaram, F.; Jamornthanyawat, N.; Suwannasin, K.; Pagornrat, W.; Watson, J.A.; Woodrow, C.J.; Dondorp, A.M.; Day, N.P.; Imwong, M.; et al. Protective effect of Mediterranean-type glucose-6-phosphate dehydrogenase deficiency against Plasmodium vivax malaria. eLife 2021, 10, e62448. [Google Scholar] [CrossRef]
- Ley, B.; Thriemer, K.; Jaswal, J.; Poirot, E.; Alam, M.S.; Phru, C.S.; Khan, W.A.; Dysoley, L.; Qi, G.; Kheong, C.C.; et al. Barriers to routine G6PD testing prior to treatment with primaquine. Malar. J. 2017, 16, 329. [Google Scholar] [CrossRef]
- Mandefro, A.; Tadelle, G.; Mekonen, B.; Golassa, L. Analyzing the six-year malaria prevalence trends at Metehara Health Center, Central Ethiopia (2017/18–2022/23): Unveiling the resurgence and its impact on malaria elimination goals by 2030—A retrospective study. Malar. J. 2023, 23, 32. [Google Scholar] [CrossRef]
- Woldesenbet, D.; Tegegne, Y.; Mussema, A.; Tamene, E.; Mohamed, K.; Abebe, W.; Mekuria, M.; Bogale, K.; Geremew, H.; Shifa, M.M.; et al. Can Ethiopia eliminate malaria? Malaria burden: Insights from the pre-elimination era, current challenges and perspectives. Front. Malar. 2025, 3, 1492444. [Google Scholar] [CrossRef]
- Kitaw, Y. Ethiopia: Moving towards evidence-based malaria elimination program. Ethiop. J. Public Health Nutr. (EJPHN) 2019, 3, 1–4. [Google Scholar]
- PMI. Ethiopia-Malaria-Profile PMI (FY-2024). Ethiopia Malaria Profile 2024. Available online: https://mesamalaria.org/wp-content/uploads/2025/04/ETHIOPIA_Malaria_Profile_PMI_FY_2024.pdf (accessed on 8 June 2023).
- Kassa, M.; Sileshi, M.; Mohammed, H.; Taye, G.; Asfaw, M. Development of resistance by Plasmodium falciparum to sulfadoxine/pyrimethamine in Amhara Region, Northwestern Ethiopia. Ethiop. Med. J. 2005, 43, 181–187. [Google Scholar]
- Lo, E.; Hemming-Schroeder, E.; Yewhalaw, D.; Nguyen, J.; Kebede, E.; Zemene, E.; Getachew, S.; Tushune, K.; Zhong, D.; Zhou, G.; et al. Transmission dynamics of co-endemic Plasmodium vivax and P. falciparum in Ethiopia and prevalence of antimalarial resistant genotypes. PLoS Neglected Trop. Dis. 2017, 11, e0005806. [Google Scholar] [CrossRef] [PubMed]
- FMOH. National strategic plan for malaria prevention, control and elimination in Ethiopia 2010–2015. Fed. Minist. Health Addis Ababa Ethiop. Geosci. Geom. 2009, 1, 8–14. [Google Scholar]
- Brhane, B.G.; Fola, A.A.; Nigussie, H.; Leonetti, A.; Kassa, M.; Hailgiorgis, H.; Wuletaw, Y.; Abera, A.; Mohammed, H.; Sime, H.; et al. Rising prevalence of Plasmodium falciparum artemisinin resistance mutations in Ethiopia. medRxiv 2024. medRxiv:2024.09. 11.24313421. [Google Scholar]
- FMOH. National Malaria Guidelines; Ababa: Addis, Ethiopia, 2018. [Google Scholar]
- Zemene, E.; Belay, D.B.; Tiruneh, A.; Lee, M.-C.; Yewhalaw, D.; Yan, G. Malaria vector dynamics and utilization of insecticide-treated nets in low-transmission setting in Southwest Ethiopia: Implications for residual transmission. BMC Infect. Dis. 2021, 21, 882. [Google Scholar] [CrossRef]
- Jaleta, K.T.; Hill, S.R.; Seyoum, E.; Balkew, M.; Gebre-Michael, T.; Ignell, R.; Tekie, H. Agro-ecosystems impact malaria prevalence: Large-scale irrigation drives vector population in western Ethiopia. Malar. J. 2013, 12, 350. [Google Scholar] [CrossRef]
- Acosta, A.L.; Castro, M.C.; Laporta, G.Z.; Conn, J.E.; Sallum, M.A.M. Future global distribution and climatic suitability of Anopheles stephensi. Sci. Rep. 2025, 15, 22268. [Google Scholar] [CrossRef]
- Ryan, S.J.; Lippi, C.A.; Villena, O.C.; Singh, A.; Murdock, C.C.; Johnson, L.R. Mapping current and future thermal limits to suitability for malaria transmission by the invasive mosquito Anopheles stephensi. Malar. J. 2023, 22, 104. [Google Scholar] [CrossRef]
- Balkew, M.; Mumba, P.; Yohannes, G.; Abiy, E.; Getachew, D.; Yared, S.; Worku, A.; Gebresilassie, A.; Tadesse, F.G.; Gadisa, E.; et al. An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018–2020. Malar. J. 2021, 20, 263. [Google Scholar] [CrossRef]
- Churcher, T.S.; Blagborough, A.M.; Sinden, R.E. Measuring the blockade of malaria transmission: Analyzing the results of mosquito feeding assays. Malar. J. 2012, 11, P18. [Google Scholar] [CrossRef]
- Vanheer, L.N.; Ramjith, J.; Mahamar, A.; Smit, M.J.; Lanke, K.; Roh, M.E.; Sanogo, K.; Sinaba, Y.; Niambele, S.M.; Diallo, M.; et al. The transmission blocking activity of artemisinin-combination, non-artemisinin, and 8-aminoquinoline antimalarial therapies: A pooled analysis of individual participant data. PLoS Med. 2025, 22, e1004683. [Google Scholar] [CrossRef]
- Stepniewska, K.; Humphreys, G.S.; Gonçalves, B.P.; Craig, E.; Gosling, R.; Guerin, P.J.; Price, R.N.; Barnes, K.I.; Raman, J.; Smit, M.R.; et al. Efficacy of single-dose primaquine with artemisinin combination therapy on Plasmodium falciparum gametocytes and transmission: An individual patient meta-analysis. J. Infect. Dis. 2022, 225, 1215–1226. [Google Scholar] [CrossRef]
- Andolina, C.; Graumans, W.; Guelbeogo, M.; van Gemert, G.-J.; Ramijth, J.; Harouna, S.; Soumanaba, Z.; Stoter, R.; Vegte-Bolmer, M.; Pangos, M.; et al. Quantification of sporozoite expelling by Anopheles mosquitoes infected with laboratory and naturally circulating P. falciparum gametocytes. eLife 2024, 12, RP90989. [Google Scholar] [CrossRef] [PubMed]
- Yalew, W.G.; Pal, S.; Bansil, P.; Dabbs, R.; Tetteh, K.; Guinovart, C.; Kalnoky, M.; Serda, B.A.; Tesfay, B.H.; Beyene, B.B.; et al. Current and cumulative malaria infections in a setting embarking on elimination: Amhara, Ethiopia. Malar. J. 2017, 16, 242. [Google Scholar] [CrossRef] [PubMed]
- Bansil, P.; Yeshiwondim, A.K.; Guinovart, C.; Serda, B.; Scott, C.; Tesfay, B.H.; Agmas, A.; Bezabih, B.; Zeleke, M.T.; Guesses, G.S.; et al. Malaria case investigation with reactive focal testing and treatment: Operational feasibility and lessons learned from low and moderate transmission areas in Amhara Region, Ethiopia. Malar. J. 2018, 17, 449. [Google Scholar] [CrossRef]
- Minwuyelet, A.; Yewhalaw, D.; Atenafu, G. Retrospective analysis of malaria prevalence over ten years (2015–2024) at Bichena Primary Hospital, Amhara Region, Ethiopia. PLoS ONE 2025, 20, e0322570. [Google Scholar] [CrossRef] [PubMed]
- Moltot, T.; Bekele, G.; Gebreegziabher, Z.A.; Lemma, T.; Sisay, M.; Silesh, M.; Mulugeta, M.; Demissie, L.; Kebede, T.N.; Taye, B.T. A five years malaria surveillance data analysis of North Shewa zone, Amhara region, Ethiopia: July 2018 to June 2023. Malar. J. 2024, 23, 187. [Google Scholar] [CrossRef]
- Adugna, T.; Getu, E.; Yewhalaw, D. Species diversity and distribution of Anopheles mosquitoes in Bure district, Northwestern Ethiopia. Heliyon 2020, 6, e05063. [Google Scholar] [CrossRef]
- Assemie, A. Distribution and abundance of larval malaria vectors in Bibugn District, East Gojjam, Ethiopia. Int. J. Trop. Insect Sci. 2022, 42, 1713–1719. [Google Scholar] [CrossRef]
- White, N.; Chotivanich, K. Artemisinin-resistant malaria. Clin. Microbiol. Rev. 2024, 37, e00109–e00124. [Google Scholar] [CrossRef]
- Teklemariam, M.; Assefa, A.; Kassa, M.; Mohammed, H.; Mamo, H. Therapeutic efficacy of artemether-lumefantrine against uncomplicated Plasmodium falciparum malaria in a high-transmission area in northwest Ethiopia. PLoS ONE 2017, 12, e0176004. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Guidelines for Malaria; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Mitri, C.; Thiery, I.; Bourgouin, C.; Paul, R. Density-dependent impact of the human malaria parasite Plasmodium falciparum gametocyte sex ratio on mosquito infection rates. Proc. R. Soc. B Biol. Sci. 2009, 276, 3721–3726. [Google Scholar] [CrossRef] [PubMed]
- White, N.J. Severe malaria. Malar. J. 2022, 21, 284. [Google Scholar] [CrossRef] [PubMed]
- Osakunor, D.N.M.; Sengeh, D.M.; Mutapi, F. Coinfections and comorbidities in African health systems: At the interface of infectious and noninfectious diseases. PLoS Neglected Trop. Dis. 2018, 12, e0006711. [Google Scholar] [CrossRef]
- Mishra, S.K.; Behera, P.K.; Satpathi, S. Cardiac involvement in malaria: An overlooked important complication. J. Vector Borne Dis. 2013, 50, 232–235. [Google Scholar] [CrossRef]
- Aminul Khan, A.K.; Gayatri Sarma, G.S.; Das, A.K. Profile of acute severe malaria with hepatopathy. Int. J. Med. Public Health 2014, 4, 4. [Google Scholar] [CrossRef]
- Fly, M.F. International Journal of Entomological Research. Int. J. Entomol. Res 2014, 2, 169–173. [Google Scholar]
- Williams, J.; Pinto, J. Training Manual on Malaria Entomology for Entomology and Vector Control Technicians (Basic Level); USAID: Washington, DC, USA, 2012; Volume 78.
- Bassat Orellana, Q.; González, R.; Menéndez, C.; Group, W.G.S. Gametocyte carriage in uncomplicated Plasmodium falciparum malaria following treatment with artemisinin combination therapy: A systematic review and meta-analysis of individual patient data. BMC Med. 2016, 14, 79. [Google Scholar] [CrossRef]
- Stepniewska, K.; White, N.J. Some considerations in the design and interpretation of antimalarial drug trials in uncomplicated falciparum malaria. Malar. J. 2006, 5, 127. [Google Scholar] [CrossRef]
- WHO. Basic Malaria Microscopy, Part I. Learner’s Guide, 2nd ed.; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- World Health Organization. Malaria Parasite Counting; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- World Health Organization. Malaria Microscopy Quality Assurance Manual-Version 2; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Wooden, J.; Kyes, S.; Sibley, C. PCR and strain identification in Plasmodium falciparum. Parasitol. Today 1993, 9, 303–305. [Google Scholar] [CrossRef]
- Rosanas-Urgell, A.; Mueller, D.; Betuela, I.; Barnadas, C.; Iga, J.; Zimmerman, P.A.; del Portillo, H.A.; Siba, P.; Mueller, I.; Felger, I. Comparison of diagnostic methods for the detection and quantification of the four sympatric Plasmodium species in field samples from Papua New Guinea. Malar. J. 2010, 9, 361. [Google Scholar] [CrossRef] [PubMed]
- Veron, V.; Simon, S.; Carme, B. Multiplex real-time PCR detection of P. falciparum, P. vivax and P. malariae in human blood samples. Exp. Parasitol. 2009, 121, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.; Zhu, X.; Zhou, L.; Liu, Q. Detection of Plasmodium Vivax by Nested PCR Amplification of Dried Blood Spots on Filter Papers. Acta Parasitol. Medica Entomol. Sin. 2000, 7, 7–10. [Google Scholar]
- Reinhart, W.H. The optimum hematocrit. Clin. Hemorheol. Microcirc. 2017, 64, 575–585. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Treatment of Malaria; World Health Organization: Geneva, Switzerland, 2015; p. 9241549122. [Google Scholar]
- World Health Organization. Method for Surveillance of Antimalarial Drug Efficacy; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Mlambo, G.; Thanakornsombut, T.; Tripathi, A.K. Simplified Plasmodium falciparum membrane feeding assay using small Petri dishes and gel warmers. Malar. J. 2024, 23, 396. [Google Scholar] [CrossRef]
- WHO. Manual on Practical Entomology Part II Method and Techniques; WHO: Geneva, Switzerland, 1975; pp. 1–186. [Google Scholar]
- Sawa, P.; Shekalaghe, S.A.; Drakeley, C.J.; Sutherland, C.J.; Mweresa, C.K.; Baidjoe, A.Y.; Manjurano, A.; Kavishe, R.A.; Beshir, K.B.; Yussuf, R.U.; et al. Malaria transmission after artemether-lumefantrine and dihydroartemisinin-piperaquine: A randomized trial. J. Infect. Dis. 2013, 207, 1637–1645. [Google Scholar] [CrossRef]
- Ouologuem, D.T.; Kone, C.O.; Togo, A.H.; Dembele, D.; Toure, S.; Koumare, S.; Dao, A.; Toure, O.; Sagara, I.; Toure, A.; et al. Differential infectivity of gametocytes after artemisinin-based combination therapy of uncomplicated falciparum malaria. Afr. J. Lab. Med. 2018, 7, 784. [Google Scholar] [CrossRef]
- Roth, J.M.; Sawa, P.; Omweri, G.; Osoti, V.; Makio, N.; Bradley, J.; Bousema, T.; Schallig, H.D.; Mens, P.F. Plasmodium falciparum gametocyte dynamics after pyronaridine–artesunate or artemether–lumefantrine treatment. Malar. J. 2018, 17, 223. [Google Scholar] [CrossRef]
- Robert, V.; Awono-Ambene, H.P.; Le Hesran, J.-Y.; Trape, J.-F. Gametocytemia and infectivity to mosquitoes of patients with uncomplicated Plasmodium falciparum malaria attacks treated with chloroquine or sulfadoxine plus pyrimethamine. Am. J. Trop. Med. Hyg. 2000, 62, 210–216. [Google Scholar] [CrossRef]
- Rakotoarisoa, M.A.; Fenomanana, J.; Dodoson, B.T.; Andrianaranjaka, V.H.I.; Ratsimbasoa, A. Comparative effect of artemether-lumefantrine and artesunate-amodiaquine on gametocyte clearance in children with uncomplicated Plasmodium falciparum malaria in Madagascar. Malar. J. 2022, 21, 331. [Google Scholar] [CrossRef]
- Makanga, M. A review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission. Malar. J. 2014, 13, 291. [Google Scholar] [CrossRef] [PubMed]
- Govere, J.; Durrheim, D.; Mngomezulu, N.; Barnes, K.; Sharp, B. Infectivity of Plasmodium falciparum gametocytes to Anopheles arabiensis after treatment with sulfadoxine-pyrimethamine. Trans. R. Soc. Trop. Med. Hyg. 2003, 97, 707–708. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, M.M.; Johnson, J.; Mullin, C.; Mallow, C.; Morgan, N.; Wallender, E.; Li, T.; Rosenthal, P.J. The relative effects of artemether-lumefantrine and non-artemisinin antimalarials on gametocyte carriage and transmission of Plasmodium falciparum: A systematic review and meta-analysis. Clin. Infect. Dis. 2017, 65, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Bousema, J.T.; Schneider, P.; Gouagna, L.C.; Drakeley, C.J.; Tostmann, A.; Houben, R.; Githure, J.I.; Ord, R.; Sutherland, C.J.; Omar, S.A.; et al. Moderate effect of artemisinin-based combination therapy on transmission of Plasmodium falciparum. J. Infect. Dis. 2006, 193, 1151–1159. [Google Scholar] [CrossRef]
- Sowunmi, A.; Fateye, B.; Adedeji, A.; Fehintola, F.; Bamgboye, A.; Babalola, C.; Happi, T.C.; Gbotosho, G.O. Effects of antifolates-co-trimoxazole and pyrimethamine-sulfadoxine-on gametocytes in children with acute, symptomatic, uncomplicated, Plasmodium falciparum malaria. Mem. Inst. Oswaldo Cruz 2005, 100, 451–455. [Google Scholar] [CrossRef]
- Sowunmi, A.; Fateye, B. Plasmodium falciparum gametocytaemia in Nigerian children: Before, during and after treatment with antimalarial drugs. Trop. Med. Int. Health 2003, 8, 783–792. [Google Scholar] [CrossRef]
- Blanken, S.L.; Barry, A.; Lanke, K.; Guelbeogo, M.; Ouedraogo, A.; Soulama, I.; Coulibaly, S.A.; Teelen, K.; Graumans, W.; Dumont, E. Plasmodium falciparum gametocyte production correlates with genetic markers of parasite replication but is not influenced by experimental exposure to mosquito biting. eBioMedicine 2024, 105, 105190. [Google Scholar] [CrossRef]
- Bradley, J.; Stone, W.; Da, D.F.; Morlais, I.; Dicko, A.; Cohuet, A.; Guelbeogo, W.M.; Mahamar, A.; Nsango, S.; Soumare, H.M.; et al. Predicting the likelihood and intensity of mosquito infection from sex specific Plasmodium falciparum gametocyte density. elife 2018, 7, e34463. [Google Scholar] [CrossRef]
- Drakeley, C.; Secka, I.; Correa, S.; Greenwood, B.; Targett, G. Host haematological factors influencing the transmission of Plasmodium falciparum gametocytes to Anopheles gambiae ss mosquitoes. Trop. Med. Int. Health 1999, 4, 131–138. [Google Scholar] [CrossRef]
- Barry, A.; Bradley, J.; Stone, W.; Guelbeogo, M.W.; Lanke, K.; Ouedraogo, A.; Soulama, I.; Nébié, I.; Serme, S.S.; Grignard, L.; et al. Higher gametocyte production and mosquito infectivity in chronic compared to incident Plasmodium falciparum infections. Nat. Commun. 2021, 12, 2443. [Google Scholar] [CrossRef]
- Toussile, R.G.I.M.W.; Genuer, R.; Morlais, I. Gametocytes infectiousness to mosquitoes: Variable selection using random forests, and zero inflated models. arXiv 2010, arXiv:1101.0344. [Google Scholar]
- Alkema, M.; Reuling, I.J.; De Jong, G.M.; Lanke, K.; Coffeng, L.E.; van Gemert, G.-J.; Van De Vegte-Bolmer, M.; De Mast, Q.; Van Crevel, R.; Ivinson, K.; et al. A randomized clinical trial to compare Plasmodium falciparum gametocytemia and infectivity after blood-stage or mosquito bite–induced controlled malaria infection. J. Infect. Dis. 2021, 224, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Martins-Campos, K.M.; Kuehn, A.; Almeida, A.; Duarte, A.P.M.; Sampaio, V.S.; Rodriguez, Í.C.; da Silva, S.G.; Ríos-Velásquez, C.M.; Lima, J.B.P.; Pimenta, P.F.; et al. Infection of Anopheles aquasalis from symptomatic and asymptomatic Plasmodium vivax infections in Manaus, western Brazilian Amazon. Parasites Vectors 2018, 11, 288. [Google Scholar] [CrossRef] [PubMed]
- Pett, H.; Gonçalves, B.P.; Dicko, A.; Nébié, I.; Tiono, A.B.; Lanke, K.; Bradley, J.; Chen, I.; Diawara, H.; Mahamar, A.; et al. Comparison of molecular quantification of Plasmodium falciparum gametocytes by Pfs25 qRT-PCR and QT-NASBA in relation to mosquito infectivity. Malar. J. 2016, 15, 539. [Google Scholar] [CrossRef]
- Gouagna, L.C.; Bancone, G.; Yao, F.; Yameogo, B.; Dabiré, K.R.; Costantini, C.; Simporé, J.; Ouedraogo, J.B.; Modiano, D. Genetic variation in human HBB is associated with Plasmodium falciparum transmission. Nat. Genet. 2010, 42, 328–331. [Google Scholar] [CrossRef]
- Ngou, C.M.; Bayibéki, A.N.; Abate, L.; Makinde, O.S.; Feufack-Donfack, L.B.; Sarah-Matio, E.M.; Bouopda-Tuedom, A.G.; Taconet, P.; Moiroux, N.; Awono-Ambéné, P.H.; et al. Influence of the sickle cell trait on Plasmodium falciparum infectivity from naturally infected gametocyte carriers. BMC Infect. Dis. 2023, 23, 317. [Google Scholar] [CrossRef]
- Lawaly, Y.R.; Sakuntabhai, A.; Marrama, L.; Konate, L.; Phimpraphi, W.; Sokhna, C.; Tall, A.; Diène Sarr, F.; Peerapittayamongkol, C.; Louicharoen, C.; et al. Heritability of the human infectious reservoir of malaria parasites. PLoS ONE 2010, 5, e11358. [Google Scholar] [CrossRef]
- Henry, N.B.; Sermé, S.S.; Siciliano, G.; Sombié, S.; Diarra, A.; Sagnon, N.f.; Traoré, A.S.; Sirima, S.B.; Soulama, I.; Alano, P. Biology of Plasmodium falciparum gametocyte sex ratio and implications in malaria parasite transmission. Malar. J. 2019, 18, 70. [Google Scholar] [CrossRef]
- Lin, J.T.; Lon, C.; Spring, M.D.; Sok, S.; Chann, S.; Ittiverakul, M.; Kuntawunginn, W.; My, M.; Thay, K.; Rahman, R.; et al. Single dose primaquine to reduce gametocyte carriage and Plasmodium falciparum transmission in Cambodia: An open-label randomized trial. PloS ONE 2017, 12, e0168702. [Google Scholar] [CrossRef]
- Abay, S.M. Blocking malaria transmission to Anopheles mosquitoes using artemisinin derivatives and primaquine: A systematic review and meta-analysis. Parasites Vectors 2013, 6, 278. [Google Scholar] [CrossRef]
- Mahamar, A.; Vanheer, L.N.; Smit, M.J.; Sanogo, K.; Sinaba, Y.; Niambele, S.M.; Diallo, M.; Dicko, O.M.; Diarra, R.S.; Maguiraga, S.O.; et al. Artemether–lumefantrine–amodiaquine or artesunate–amodiaquine combined with single low-dose primaquine to reduce Plasmodium falciparum malaria transmission in Ouélessébougou, Mali: A five-arm, phase 2, single-blind, randomised controlled trial. Lancet Microbe 2025, 6, 100966. [Google Scholar] [CrossRef]
- Bousema, T.; Okell, L.; Shekalaghe, S.; Griffin, J.T.; Omar, S.; Sawa, P.; Sutherland, C.; Sauerwein, R.; Ghani, A.C.; Drakeley, C. Revisiting the circulation time of Plasmodium falciparum gametocytes: Molecular detection methods to estimate the duration of gametocyte carriage and the effect of gametocytocidal drugs. Malar. J. 2010, 9, 136. [Google Scholar] [CrossRef]
- Andolina, C.; Ramjith, J.; Rek, J.; Lanke, K.; Okoth, J.; Grignard, L.; Arinaitwe, E.; Briggs, J.; Bailey, J.; Aydemir, O.; et al. Plasmodium falciparum gametocyte carriage in longitudinally monitored incident infections is associated with duration of infection and human host factors. Sci. Rep. 2023, 13, 7072. [Google Scholar] [CrossRef]
- Bousema, T.; Drakeley, C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin. Microbiol. Rev. 2011, 24, 377–410. [Google Scholar] [CrossRef]
- Stepniewska, K.; Allen, E.N.; Humphreys, G.S.; Poirot, E.; Craig, E.; Kennon, K.; Yilma, D.; Bousema, T.; Guerin, P.J.; White, N.J.; et al. Safety of single-dose primaquine as a Plasmodium falciparum gametocytocide: A systematic review and meta-analysis of individual patient data. BMC Med. 2022, 20, 350. [Google Scholar] [CrossRef]
- Bastiaens, G.J.; Tiono, A.B.; Okebe, J.; Pett, H.E.; Coulibaly, S.A.; Goncalves, B.P.; Affara, M.; Ouedraogo, A.; Bougouma, E.C.; Sanou, G.S.; et al. Safety of single low-dose primaquine in glucose-6-phosphate dehydrogenase deficient falciparum-infected African males: Two open-label, randomized, safety trials. PLoS ONE 2018, 13, e0190272. [Google Scholar] [CrossRef]
- Mwaiswelo, R.; Ngasala, B.E.; Jovel, I.; Gosling, R.; Premji, Z.; Poirot, E.; Mmbando, B.P.; Björkman, A.; Mårtensson, A. Safety of a single low-dose of primaquine in addition to standard artemether-lumefantrine regimen for treatment of acute uncomplicated Plasmodium falciparum malaria in Tanzania. Malar. J. 2016, 15, 316. [Google Scholar] [CrossRef]







| Characteristics | AL Only (n = 48) | AL + SLD-PQ (n = 48) |
|---|---|---|
| Male | 33 (68.8%) | 31 (64.6) |
| Female | 15 (31.3%) | 17 (35.4) |
| Median age in year (IQR) | 24 (19.2–33.0) | 27 (20.2–40.0) |
| Median weight in kg (IQR) | 50.6 (45.9–58.2) | 49.6 (43.2–55.4) |
| Median hemoglobin in g/dL (IQR) | 13.0 (12–15) | 13.1 (11.6–14.0) |
| Median axillary temperature in °C (IQR) | 38.6 (37.9–39.4) | 38.3 (37.9–38.7) |
| Median asexual parasitaemia density per µL (IQR) | 2720.0 (960–4960) | 2560.0 (1760.0–4860.0) |
| Mean gametocyte density per µL (±std) | 32.6 (22.1) | 35.0(22.6) |
| Treatments | Gametocyte Prevalence (%) | Mean Gametocyte Density (±std)/µL | Reduction in Gametocyte Prevalence | Within-Group (Mean ± std) | p Value | Between-Group (Mean diff) | p Value | |
|---|---|---|---|---|---|---|---|---|
| Day 0 (Pre treatment) | AL alone | 48/48 (100%) | 32.6 (22.1) | - | - | - | - | Ref |
| AL + SLD-PQ | 48/48 (100%) | 35. 0(22.6) | - | - | - | −2.42 | 0.6 | |
| Day 3 | AL alone | 18/45 (28.9%) | 6.9 (9.8) | 27/45 (60%) | −18.3 (21.7) | <0.001 | - | Ref |
| AL + SLD-PQ | 7/46 (15.2%) | 1.4 (3.5) | 39/46 (84.8%) | −17.1 (23.8) | <0.001 | −5.4 | 0.001 | |
| Day 7 | AL alone | 5/41 (12.2%) | 1.3 (4.2) | 36/41 (87.8%) | 2.6 (8.1) | 0.004 | - | Ref |
| AL + SLD-PQ | 0/43 (0%) | 0 | 43/43 (100%) | 0.8 (2.8) | 0.007 | −1.4 | 0.033 | |
| Day 14 | AL alone | 0/38 (0%) | 0 | 38/38 (100%) | 0.9 (2.9) | 0.005 | - | |
| AL + SLD-PQ | 0/38 (0%) | 0 | 30/38 (100) | - | - | - | ||
| Day 28 | Al alone | 0/32 (0%) | 0 | 32/32 (100%) | - | - | ||
| AL + SLD-PQ | 0/35 (0%) | 0 | 35/35 (100%) | - | - | |||
| Treatments | Infectious Individuals | Mosquito Infection Rate | Reduction in Mosquito Infection Rate | Within-Group | Between-Group | p-Value | |
|---|---|---|---|---|---|---|---|
| Day 0 (Pre treatment) | AL alone | 27/42 (64.3%) | 69/879 (7.9%) | - | - | - | - |
| AL + SLD-PQ | 29/46 (64%) | 83/969 (8.6%) | - | - | - | - | |
| Day 3 | AL alone | 12/42 (28.6%) | 28/961 (2.9%) | 62.9% | 0.02 | Ref | |
| AL + SLD-PQ | 3/44 (6.8%) | 0/1017 (0%) | 100% | 0.00 | 100% | 0.00 | |
| Day 7 | AL alone | 3/41 (7.3%) | 11/1066 (1.0%) | 86.9% | 0.00 | Ref | |
| AL + SLD-PQ | 0/43 (0%) | 0/985 (0%) | 100% | 0.00 | 100% | 0.01 | |
| Day 14 | AL alone | 0/38 (0%) | 0/1068 (0%) | 100% | 0.00 | Ref | - |
| AL + SLD-PQ | 0/38 (0%) | 0/1221 (0%) | 100% | 0.00 | (0)% | ||
| Gametocytemia Classification | No. of Participants Who Used Blood for Membrane Feeding Assay | No. of An. arabiensis Used for Membrane Feeding | No. of Infected An. arabiensis (%) | Oocyst Density in Rang | Association b/n Gametocyte Density and Mosquito Infectivity | ||
|---|---|---|---|---|---|---|---|
| Odd Ratio (95%, CI) | p Value | ||||||
| Base line | Low | 12 | 252 | 15 (5.9%) | 3–154 | ref | |
| Moderate | 56 | 1160 | 98 (8.4%) | 6–211 | 1.46 (0.82–2.60) | 0.19 | |
| High | 20 | 436 | 39 (8.9%) | 4–324 | 2.46 (1.5–2.90) | 0.04 | |
| Total | 88 | 1848 | 152 (8.2%) | - | - | ||
| Day 3 Al only | Low | 6 | 137 | 2 (1.5%) | 3–48 | ref | |
| Moderate | 31 | 646 | 15 (2.3%) | 3–296 | 1.55 (0.32–7.47) | 0.58 | |
| High | 8 | 178 | 11 (6.2%) | 3–211 | 4.41 (1.9–21.3) | 0.04 | |
| Total | 42 | 961 | 28 (2.9%) | - | - | - | |
| Day 3 AL + SLD-PQ | Low | 5 | 123 | 0 | - | - | - |
| Moderate | 28 | 632 | 11 (1.7%) | 3–167 | - | - | |
| High | 11 | 262 | 5 (1.9%) | 3–179 | - | - | |
| Total | 44 | 1017 | 16 (1.6%) | - | - | - | |
| Day 7 AL only | Low | 6 | 160 | 0 | - | - | - |
| Moderate | 28 | 729 | 13 (1.8) | 2–186 | - | - | |
| High | 7 | 167 | 2 (1.2%) | 1–32 | - | - | |
| Total | 41 | 1066 | 15 (1.4%) | - | - | - | |
| Day 7 AL + SLD-PQ | Low | 5 | 152 | 0 | - | ||
| Moderate | 28 | 587 | 0 | - | - | - | |
| High | 10 | 246 | 0 | - | - | - | |
| Total | 43 | 985 | 0 | - | - | - | |
| Day 14 AL only | Low | 5 | 147 | 0 | - | - | |
| Moderate | 27 | 748 | 0 | - | - | - | |
| High | 6 | 173 | 0 | - | - | - | |
| Total | 38 | 1068 | 0 | - | - | - | |
| Day 14 AL + SLD-PQ | Low | 4 | 131 | 0 | - | ||
| Moderate | 25 | 826 | 0 | - | - | - | |
| High | 9 | 264 | 0 | - | - | - | |
| Total | 38 | 1221 | 0- | - | - | - | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Minwuyelet, A.; Yewhalaw, D.; Petronio Petronio, G.; Di Marco, R.; Atenafu, G. The Effect of Artemether–Lumefantrine Combined with a Single Dose of Primaquine on Plasmodium falciparum Gametocyte Clearance and Post-Treatment Infectivity to Anopheles arabiensis. Trop. Med. Infect. Dis. 2026, 11, 19. https://doi.org/10.3390/tropicalmed11010019
Minwuyelet A, Yewhalaw D, Petronio Petronio G, Di Marco R, Atenafu G. The Effect of Artemether–Lumefantrine Combined with a Single Dose of Primaquine on Plasmodium falciparum Gametocyte Clearance and Post-Treatment Infectivity to Anopheles arabiensis. Tropical Medicine and Infectious Disease. 2026; 11(1):19. https://doi.org/10.3390/tropicalmed11010019
Chicago/Turabian StyleMinwuyelet, Awoke, Delenasaw Yewhalaw, Giulio Petronio Petronio, Roberto Di Marco, and Getnet Atenafu. 2026. "The Effect of Artemether–Lumefantrine Combined with a Single Dose of Primaquine on Plasmodium falciparum Gametocyte Clearance and Post-Treatment Infectivity to Anopheles arabiensis" Tropical Medicine and Infectious Disease 11, no. 1: 19. https://doi.org/10.3390/tropicalmed11010019
APA StyleMinwuyelet, A., Yewhalaw, D., Petronio Petronio, G., Di Marco, R., & Atenafu, G. (2026). The Effect of Artemether–Lumefantrine Combined with a Single Dose of Primaquine on Plasmodium falciparum Gametocyte Clearance and Post-Treatment Infectivity to Anopheles arabiensis. Tropical Medicine and Infectious Disease, 11(1), 19. https://doi.org/10.3390/tropicalmed11010019

