Leptospirosis in Southeast Asia: Investigating Seroprevalence, Transmission Patterns, and Diagnostic Challenges
Abstract
1. Introduction
2. Seroprevalence of Leptospirosis in Southeast Asia and Factors Affecting Disease Transmission
2.1. Leptospira Seroprevalence in Human Populations
2.2. Animal Seroprevalence and the Maintenance of the Leptospira Transmission Cycle
3. Effects of Geographic and Climatic Influences, Urbanization, and Climate Change on Leptospirosis Transmission
4. Spatial Epidemiological Approaches in Tracking the Environmental Transmission of Leptospirosis
5. Leptospirosis Diagnostics in Humans and Implications in Public Health Disease Management Strategies
5.1. Traditional Diagnostic Methods
5.2. Molecular Diagnostic Approaches
5.3. Rapid Diagnostic Tests and Point-of-Care Assays
5.4. Combined Diagnostic Approaches and Integrated Algorithms
5.5. Future Perspectives and Recent Technologies
| Type of Test | Method of Detection | Advantages | Disadvantages | References |
|---|---|---|---|---|
| Culture technique | Isolation of live leptospires | - High specificity - Isolates can be characterized | - Long incubation time - Requires rigorous biosafety measures and training | [89,127,156] |
| Microscopic agglutination test (MAT) | Microscopic observation of antigen–antibody interaction | - Serovar specific - Widely accepted in commercial settings - Clinically validated | - Labor intensive - Longer turn-around time - Less sensitive during the early acute phase - Prone to misdiagnosis | [128,129,131] |
| ELISA using IgG or IgM antibodies | Spectrophotometric detection of antigen-antibody interaction | - Faster turnaround and high throughput - High reproducibility | - High potential for cross-reactivity - Cannot discriminate between current and past infection - Less sensitive during the early acute phase | [130,131] |
| Molecular techniques (conventional PCR, qPCR, multiplex PCR assay) | Detection of leptospiral DNA | - Rapid and real-time detection and quantification - More sensitive during the early acute phase - Differentiates between serogroups - Clinically validated | - Highly technical - Costly - Antibiotic therapy might give false negative results | [136,137] |
| Isothermal amplification | Nucleic acid amplification using a single temperature | - Rapid and cost-effective - Highly sensitive and specific - Does not require a thermal cycler - High potential for point-of-care | - Highly technical - Costly reagents - Not standardized | [138,139,145] |
| Rapid diagnostic tests (RDTs) | Detection of Leptospira-specific antigen or antibodies | - Rapid results - Minimal technical skill requirements - Does not require advanced equipment to produce result | - Varying specificity and sensitivity - Cannot identify infecting serovar - Require confirmatory testing (PCR, MAT, etc.) - Not standardized | [140,141,157] |
| Biosensor (DNA, electrochemical) | Biorecognition element (DNA probe, antigen, LPS, or whole cell) | - High sensitivity - Portability and real-time detection | - High cost of fabrication - Complex sample preparation - Sensitive to inhibitors - Not standardized | [147,148] |
| Aptamers | Stable, single-stranded nucleic acid (DNA or RNA) binding to target molecule | - Highly sensitive and specific - Cost-effective - Highly stable - High reproducibility - Flexibility in various detection platforms | - Highly technical and time-consuming - Sensitive to sample inhibitors - Not standardized | [149,150,151,152] |
5.6. Implications in Disease Management and Impact on Public Health Policy
6. Conclusions and Future Directions of Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.L.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; et al. Disability-Adjusted Life Years (DALYs) for 291 Diseases and Injuries in 21 Regions, 1990–2010: A Systematic Analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2197–2223. [Google Scholar] [CrossRef]
- WHO. Report of the Second Meeting of the Leptospirosis Burden Epidemiology Reference Group; World Health Organization: Geneva, Switzerland, 2011; p. 37.
- Torgerson, P.R.; Hagan, J.E.; Costa, F.; Calcagno, J.; Kane, M.; Martinez-Silveira, M.S.; Goris, M.G.A.; Stein, C.; Ko, A.I.; Abela-Ridder, B. Global Burden of Leptospirosis: Estimated in Terms of Disability Adjusted Life Years. PLoS Neglected Trop. Dis. 2015, 9, e0004122. [Google Scholar] [CrossRef]
- Agampodi, S.; Gunarathna, S.; Lee, J.-S.; Excler, J. Global, Regional, and Country-Level Cost of Leptospirosis Due to Loss of Productivity in Humans. medRxiv 2023. [Google Scholar] [CrossRef]
- Arbiol, J.; Borja, M.; Yabe, M.; Nomura, H.; Gloriani, N.; Yoshida, S. Valuing Human Leptospirosis Prevention Using the Opportunity Cost of Labor. Int. J. Environ. Res. Public Health 2013, 10, 1845. [Google Scholar] [CrossRef] [PubMed]
- Borja, M. Burden of Disease Study: Leptospirosis in an Urban Setting, Metro Manila; Burden of Disease. A Project conducted by the University of the Philippines Manila, College of Public Health, Manila, Philippines, 2024. Abstract. Available online: https://cph.upm.edu.ph/node/337#:~:text=The%20economic%20impact%20of%20Leptospirosis,month%20is%20only%20217%20US$ (accessed on 27 November 2025).
- Nugraheni, W.P.; Lestyoningrum, S.D.; Ristiyanto, R.; Putro, W.G.; Pawitaningtyas, I.; Nuraini, S.; Putri, L.M.; Faisal, D.R.; Noveyani, A.E.; Mikrajab, M.A. Economic Loss of Leptospirosis: Is It Still Appropriate to Be Tropical Neglected Zoonosis Disease? Kesmas 2024, 19, 61–69. [Google Scholar] [CrossRef]
- Saizan, S.; Sukeri, S.; Zahiruddin, W.M.; Shafei, M.N.; Rukman, A.H.; Malina, O.; Jamaluddin, T.Z.M.T.; Aziah, D. Economic Benefit of Leptospirosis Prevention in Kelantan, Malaysia: Willingness-to-Contribute Approach. Int. J. Health Plan. Manag. 2019, 34, e817–e823. [Google Scholar] [CrossRef] [PubMed]
- Douchet, L.; Goarant, C.; Mangeas, M.; Menkes, C.; Hinjoy, S.; Herbreteau, V. Unraveling the Invisible Leptospirosis in Mainland Southeast Asia and Its Fate under Climate Change. Sci. Total Environ. 2022, 832, 155018. [Google Scholar] [CrossRef]
- Laras, K.; Cao, B.V.; Bounlu, K.; Nguyen, T.K.T.; Olson, J.G.; Thongchanh, S.; Tran, N.V.A.; Hoang, K.L.; Punjabi, N.; Ha, B.K.; et al. The Importance of Leptospirosis in Southeast Asia. Am. J. Trop. Med. Hyg. 2002, 67, 278–286. [Google Scholar] [CrossRef]
- Warnasekara, J.; Srimantha, S.; Senavirathna, I.; Kappagoda, C.; Farika, N.; Nawinna, A.; Agampodi, S. The Variable Presence of Leptospira in the Environment; an Epidemiological Explanation Based on Serial Analysis of Water Samples. PLoS ONE 2022, 17, e0263719. [Google Scholar] [CrossRef]
- Chadsuthi, S.; Chalvet-Monfray, K.; Wiratsudakul, A.; Modchang, C. The Effects of Flooding and Weather Conditions on Leptospirosis Transmission in Thailand. Sci. Rep. 2021, 11, 1486. [Google Scholar] [CrossRef]
- Widiyanti, D.; Djannatun, T.; Astuti, I.I.P.; Maharsi, E.D. Leptospira Detection in Flood-prone Environment of Jakarta, Indonesia. Zoonoses Public Health 2019, 66, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Ehelepola, N.D.B.; Ariyaratne, K.; Dissanayake, W.P. The Correlation between Local Weather and Leptospirosis Incidence in Kandy District, Sri Lanka from 2006 to 2015. Glob. Health Action 2019, 12, 1553283. [Google Scholar] [CrossRef]
- Gloriani, N.G.; Villanueva, S.; Yanagihara, Y.; Yoshida, S. Post-Flooding Surveillance of Leptospirosis after the Onslaught of Typhoons Nesat, Nalgae and Washi in the Philippines. Southeast Asian J. Trop. Med. Public Health 2016, 47, 774–786. [Google Scholar]
- Victoriano, A.F.B.; Smythe, L.D.; Gloriani-Barzaga, N.; Cavinta, L.L.; Kasai, T.; Limpakarnjanarat, K.; Ong, B.L.; Gongal, G.; Hall, J.; Coulombe, C.A.; et al. Leptospirosis in the Asia Pacific Region. BMC Infect. Dis. 2009, 9, 147. [Google Scholar] [CrossRef] [PubMed]
- Pappas, G.; Papadimitriou, P.; Siozopoulou, V.; Christou, L.; Akritidis, N. The Globalization of Leptospirosis: Worldwide Incidence Trends. Int. J. Infect. Dis. 2008, 12, 351–357. [Google Scholar] [CrossRef]
- Costa, F.; Hagan, J.E.; Calcagno, J.; Kane, M.; Torgerson, P.; Martinez-Silveira, M.S.; Stein, C.; Abela-Ridder, B.; Ko, A.I. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLoS Neglected Trop. Dis. 2015, 9, e0003898. [Google Scholar] [CrossRef]
- Hem, S.; Ly, S.; Votsi, I.; Vogt, F.; Asgari, N.; Buchy, P.; Heng, S.; Picardeau, M.; Sok, T.; Ly, S.; et al. Estimating the Burden of Leptospirosis among Febrile Subjects Aged below 20 Years in Kampong Cham Communities, Cambodia, 2007–2009. PLoS ONE 2016, 11, e0151555. [Google Scholar] [CrossRef]
- Tran, V.D.; Phuong Mai, L.T.; Thu, N.T.; Linh, B.K.; Than, P.D.; Quyet, N.T.; Dung, L.P.; Ngoc Phuong Mai, T.; My Hanh, N.T.; Hai, H.; et al. Seroprevalence and Serovar Distribution of Leptospirosis among Healthy People in Vietnam: Results from a Multi-Center Study. Clin. Epidemiol. Glob. Health 2021, 10, 100700. [Google Scholar] [CrossRef]
- Thai, K.T.D.; Binh, T.Q.; Giao, P.T.; Phuong, H.L.; Hung, L.Q.; Nam, N.V.; Nga, T.T.; Goris, M.G.A.; De Vries, P.J. Seroepidemiology of Leptospirosis in Southern Vietnamese Children. Trop. Med. Int. Health 2006, 11, 738–745. [Google Scholar] [CrossRef]
- Van, C.T.B.; Thuy, N.T.T.; San, N.H.; Hien, T.T.; Baranton, G.; Perolat, P. Human Leptospirosis in the Mekong Delta, Viet Nam. Trans. R. Soc. Trop. Med. Hyg. 1998, 92, 625–628. [Google Scholar] [CrossRef]
- Kawaguchi, L.; Sengkeopraseuth, B.; Tsuyuoka, R.; Koizumi, N.; Akashi, H.; Vongphrachanh, P.; Watanabe, H.; Aoyama, A. Seroprevalence of Leptospirosis and Risk Factor Analysis in Flood-Prone Rural Areas in Lao PDR. Am. J. Trop. Med. Hyg. 2008, 78, 957–961. [Google Scholar] [CrossRef]
- Limothai, U.; Tachaboon, S.; Dinhuzen, J.; Singh, J.; Jirawannaporn, S.; Leewongworasingh, A.; Thongpin, M.; Brameld, S.; Watanaboonyongcharoen, P.; Sitprija, V.; et al. Seroprevalence of Leptospirosis among Blood Donors in an Endemic Area. Sci. Rep. 2023, 13, 12336. [Google Scholar] [CrossRef] [PubMed]
- Chadsuthi, S.; Bicout, D.J.; Wiratsudakul, A.; Suwancharoen, D.; Petkanchanapong, W.; Modchang, C.; Triampo, W.; Ratanakorn, P.; Chalvet-Monfray, K. Investigation on Predominant Leptospira Serovars and Its Distribution in Humans and Livestock in Thailand, 2010–2015. PLoS Neglected Trop. Dis. 2017, 11, e0005228. [Google Scholar] [CrossRef]
- Thipmontree, W.; Suputtamongkol, Y.; Tantibhedhyangkul, W.; Suttinont, C.; Wongswat, E.; Silpasakorn, S. Human Leptospirosis Trends: Northeast Thailand, 2001–2012. Int. J. Environ. Res. Public Health 2014, 11, 8542. [Google Scholar] [CrossRef]
- Jamora, R.; Villanueva, S.Y.A.; Gloriani, N. Seroprevalence of Leptospira and Description of Work-Related Practices and Characteristics among Sewer Workers Servicing Selected Cities in the West Zone of Metro Manila, Philippines. Philipp. J. Sci. 2021, 151, 215. [Google Scholar] [CrossRef]
- Rahman, M.H.A.A.; Hairon, S.M.; Hamat, R.A.; Jamaluddin, T.Z.M.T.; Shafei, M.N.; Idris, N.; Osman, M.; Sukeri, S.; Wahab, Z.A.; Mohammad, W.M.Z.W.; et al. Seroprevalence and Distribution of Leptospirosis Serovars among Wet Market Workers in Northeastern, Malaysia: A Cross Sectional Study. BMC Infect. Dis. 2018, 18, 569. [Google Scholar] [CrossRef] [PubMed]
- Lea, J.S.X.; Reduan, M.F.H.; Choong, S.S.; Kamaruzaman, I.N.A.; Ooi, P.T.; AbuBakar, S.; Loong, S.K.; Rahman, M.S.A. Leptospirosis in Humans and Animals in Malaysia: A Review from 1976 to 2023. Vet. World 2025, 18, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Benacer, D.; Thong, K.L.; Verasahib, K.B.; Galloway, R.L.; Hartskeerl, R.A.; Lewis, J.W.; Mohd Zain, S.N. Human Leptospirosis in Malaysia: Reviewing the Challenges After 8 Decades (1925–2012). Asia Pac. J. Public Health 2016, 28, 290–302. [Google Scholar] [CrossRef]
- Rahman, A.N.A.; Hasnul Hadi, N.H.; Sun, Z.; Thilakavathy, K.; Joseph, N. Regional Prevalence of Intermediate Leptospira spp. in Humans: A Meta-Analysis. Pathogens 2021, 10, 943. [Google Scholar] [CrossRef]
- Suwancharoen, D.; Chaisakdanugull, Y.; Thanapongtharm, W.; Yoshida, S. Serological Survey of Leptospirosis in Livestock in Thailand. Epidemiol. Infect. 2013, 141, 2269–2277. [Google Scholar] [CrossRef]
- Mai, L.T.P.; Dung, L.P.; Than, P.D.; Dinh, T.V.; Quyet, N.T.; Hai, H.; Mai, T.N.P.; Hanh, N.T.M.; Ly, N.K. Leptospira Infection among Human-Close-Contact Animals in Different Geographical Areas in Vietnam. Sci. Prog. 2021, 104, 00368504211031747. [Google Scholar] [CrossRef]
- Zaki, A.M.; Rahim, M.A.A.; Azme, M.H.; Mahmood, N.A.; Jeffree, M.S.; Ghazi, H.F.; Hassan, M.R. Animal Reservoirs for Leptospira spp. in South-East Asia: A Meta-Analysis. JoARM 2018, 5, 23–31. [Google Scholar] [CrossRef]
- Benacer, D.; Thong, K.L.; Ooi, P.T.; Souris, M.; Lewis, J.W.; Ahmed, A.A.; Mohd Zain, S.N. Serological and Molecular Identification of Leptospira spp. in Swine and Stray Dogs from Malaysia. Trop. Biomed. 2017, 34, 89–97. [Google Scholar]
- Rahman, S.A.; Khor, K.H.; Khairani-Bejo, S.; Lau, S.F.; Mazlan, M.; Roslan, A.; Goh, S.H. Detection and Characterization of Leptospira spp. in Dogs Diagnosed with Kidney and/or Liver Disease in Selangor, Malaysia. J. Vet. Diagn. Investig. 2021, 33, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.F.; Wong, J.Y.; Khor, K.H.; Roslan, M.A.; Abdul Rahman, M.S.; Bejo, S.K.; Radzi, R.; Bahaman, A.R. Seroprevalence of Leptospirosis in Working Dogs. Top. Companion Anim. Med. 2017, 32, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Garoussi, M.T.; Atarie, S.; Vodjgani, M.; Gharagozlou, F.; Vand e Ussefi, J. The Prevalence and Control of Bovine Mastitis in Leptospira Outbreak. Comp. Clin. Pathol. 2017, 26, 189–192. [Google Scholar] [CrossRef]
- Mori, M.; Bakinahe, R.; Vannoorenberghe, P.; Maris, J.; De Jong, E.; Tignon, M.; Marin, M.; Desqueper, D.; Fretin, D.; Behaeghel, I. Reproductive Disorders and Leptospirosis: A Case Study in a Mixed-Species Farm (Cattle and Swine). Vet. Sci. 2017, 4, 64. [Google Scholar] [CrossRef] [PubMed]
- Hamond, C.; LeCount, K.; Hamond, C.; LeCount, K.; Putz, E.J.; Bayles, D.O.; Putz, E.J.; Bayles, D.O.; Camp, P.; Camp, P.; et al. Bovine Leptospirosis Due to Persistent Renal Carriage of Leptospira borgpetersenii serovar Tarassovi. Front. Vet. Sci. 2022, 9, 848664. [Google Scholar] [CrossRef]
- Gloriani, N.G.; Villanueva, S.; Yanagihara, Y.; Yoshida, S. Identification of Prevalent Leptospira Serovars Infecting Water Buffaloes, Cows, Dogs, Pigs, and Rats in the Philippines. Southeast Asian J. Trop. Med. Public Health 2016, 47, 766–773. [Google Scholar]
- Gomes de Araújo, H.; Limeira, C.H.; Viviane Ferreira de Aquino, V.; Longo Ribeiro Vilela, V.; José Alves, C.; Silvano dos Santos Higino, S.; de Sousa Americo Batista Santos, C.; Santos de Azevedo, S. Global Seropositivity of Swine Leptospirosis: Systematic Review and Meta-Analysis. Trop. Med. Infect. Dis. 2023, 8, 158. [Google Scholar] [CrossRef]
- Petri, F.A.M.; Sonalio, K.; de Souza Almeida, H.M.; Mechler-Dreibi, M.L.; Galdeano, J.V.B.; Mathias, L.A.; de Oliveira, L.G. Cross-Sectional Study of Leptospira spp. in Commercial Pig Farms in the State of Goiás, Brazil. Trop. Anim. Health Prod. 2020, 53, 13. [Google Scholar] [CrossRef]
- Eckert, K.D.; Keiter, D.A.; Beasley, J.C. Animal Visitation to Wild Pig (Sus scrofa) Wallows and Implications for Disease Transmission. J. Wildl. Dis. 2019, 55, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Pearson, H.E.; Toribio, J.-A.L.M.L.; Lapidge, S.J.; Hernández-Jover, M. Evaluating the Risk of Pathogen Transmission from Wild Animals to Domestic Pigs in Australia. Prev. Vet. Med. 2016, 123, 39–51. [Google Scholar] [CrossRef]
- Costa, A.C.T.R.B.; Colocho, R.A.B.; Pereira, C.R.; Lage, A.P.; Heinemann, M.B.; Dorneles, E.M.S. Canine Leptospirosis in Stray and Sheltered Dogs: A Systematic Review. Anim. Health Res. Rev. 2022, 23, 39–58. [Google Scholar] [CrossRef]
- Ellis, W.A. Animal Leptospirosis. In Leptospira and Leptospirosis; Adler, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 99–137. ISBN 978-3-662-45059-8. [Google Scholar]
- Barragan, V.; Nieto, N.; Keim, P.; Pearson, T. Meta-Analysis to Estimate the Load of Leptospira Excreted in Urine: Beyond Rats as Important Sources of Transmission in Low-Income Rural Communities. BMC Res. Notes 2017, 10, 71. [Google Scholar] [CrossRef]
- Altheimer, K.; Jongwattanapisan, P.; Luengyosluechakul, S.; Pusoonthornthum, R.; Prapasarakul, N.; Kurilung, A.; Broens, E.M.; Wagenaar, J.A.; Goris, M.G.A.; Ahmed, A.A.; et al. Leptospira Infection and Shedding in Dogs in Thailand. BMC Vet. Res. 2020, 16, 89. [Google Scholar] [CrossRef]
- Mazzotta, E.; Zan, G.D.; Cocchi, M.; Boniotti, M.B.; Bertasio, C.; Furlanello, T.; Lucchese, L.; Ceglie, L.; Bellinati, L.; Natale, A. Feline Susceptibility to Leptospirosis and Presence of Immunosuppressive Co-Morbidities: First European Report of L. interrogans serogroup Australis Sequence Type 24 in a Cat and Survey of Leptospira Exposure in Outdoor Cats. Trop. Med. Infect. Dis. 2023, 8, 54. [Google Scholar] [CrossRef] [PubMed]
- Murillo, A.; Goris, M.; Ahmed, A.; Cuenca, R.; Pastor, J. Leptospirosis in Cats: Current Literature Review to Guide Diagnosis and Management. J. Feline Med. Surg. 2020, 22, 216–228. [Google Scholar] [CrossRef]
- Holzapfel, M.; Taraveau, F.; Djelouadji, Z. Serological and Molecular Detection of Pathogenic Leptospira in Domestic and Stray Cats on Reunion Island, French Indies. Epidemiol. Infect. 2021, 149, e229. [Google Scholar] [CrossRef]
- Alashraf, A.R.; Lau, S.F.; Khairani-Bejo, S.; Khor, K.H.; Ajat, M.; Radzi, R.; Roslan, M.A.; Rahman, M.S.A. First Report of Pathogenic Leptospira spp. Isolated from Urine and Kidneys of Naturally Infected Cats. PLoS ONE 2020, 15, e0230048. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, J.F.; Reagan, K.L.; Peavy, T.; Zecca, I.B.; Hamer, S.A.; Sykes, J.E. Evaluation of Leptospira Infection and Exposure in Free-Roaming Cat Populations in Northern California and Southern Texas. J. Feline Med. Surg. 2023, 25, 1098612X231162471. [Google Scholar] [CrossRef]
- Dorsch, R.; Ojeda, J.; Salgado, M.; Monti, G.; Collado, B.; Tomckowiack, C.; Tejeda, C.; Müller, A.; Eberhard, T.; Klaasen, H.L.B.M.; et al. Cats Shedding Pathogenic Leptospira spp.—An Underestimated Zoonotic Risk? PLoS ONE 2020, 15, e0239991. [Google Scholar] [CrossRef]
- Akhtar, N.; Hayee, S.; Idnan, M.; Nawaz, F.; BiBi, S. Rodents Human Zoonotic Pathogens Transmission: Historical Background and Future Prospects; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Cosson, J.-F.; Picardeau, M.; Mielcarek, M.; Tatard, C.; Chaval, Y.; Suputtamongkol, Y.; Buchy, P.; Jittapalapong, S.; Herbreteau, V.; Morand, S. Epidemiology of Leptospira Transmitted by Rodents in Southeast Asia. PLoS Neglected Trop. Dis. 2014, 8, e2902. [Google Scholar] [CrossRef]
- Blasdell, K.R.; Morand, S.; Perera, D.; Firth, C. Association of Rodent-Borne Leptospira spp. with Urban Environments in Malaysian Borneo. PLoS Neglected Trop. Dis. 2019, 13, e0007141. [Google Scholar] [CrossRef]
- Boey, K.; Boey, K.; Shiokawa, K.; Shiokawa, K.; Rajeev, S.; Rajeev, S. Leptospira Infection in Rats: A Literature Review of Global Prevalence and Distribution. PLoS Neglected Trop. Dis. 2019, 13, e0007499. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.; Zeppelini, C.G.; Ribeiro, G.S.; Santos, N.; Reis, R.B.; Martins, R.D.; Bittencourt, D.; Santana, C.; Brant, J.; Reis, M.G.; et al. Household Rat Infestation in Urban Slum Populations: Development and Validation of a Predictive Score for Leptospirosis. PLoS Neglected Trop. Dis. 2021, 15, e0009154. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Lopez, M.; Lurier, T.; Bouilloud, M.; Pradel, J.; Tatard, C.; Sepulveda, D.; Anfray, G.; Dussert, J.; Bourhy, P.; Charbonnel, N.; et al. Prevalence, Genetic Diversity and Eco-Epidemiology of Pathogenic Leptospira Species in Small Mammal Communities in Urban Parks Lyon City, France. PLoS ONE 2024, 19, e0300523. [Google Scholar] [CrossRef]
- Helman, S.K.; Tokuyama, A.F.N.; Mummah, R.O.; Stone, N.E.; Gamble, M.W.; Snedden, C.E.; Borremans, B.; Gomez, A.C.R.; Cox, C.; Nussbaum, J.; et al. Pathogenic Leptospira Are Widespread in the Urban Wildlife of Southern California. Sci. Rep. 2023, 13, 14368. [Google Scholar] [CrossRef]
- Blasdell, K.R.; Morand, S.; Laurance, S.G.; Doggett, S.L.; Hahs, A.K.; Trinh, K.; Perera, D.; Firth, C. Rats and the City: Implications of Urbanization on Zoonotic Disease Risk in Southeast Asia. Proc. Natl. Acad. Sci. USA 2022. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, S.Y.A.M.; Ezoe, H.; Baterna, R.A.; Yanagihara, Y.; Muto, M.; Koizumi, N.; Fukui, T.; Okamoto, Y.; Masuzawa, T.; Cavinta, L.L.; et al. Serologic and Molecular Studies of Leptospira and Leptospirosis among Rats in the Philippines. Am. J. Trop. Med. Hyg. 2010, 82, 889. [Google Scholar] [CrossRef]
- Sluydts, V.; Sarathchandra, S.R.; Piscitelli, A.P.; Van Houtte, N.; Gryseels, S.; Mayer-Scholl, A.; Bier, N.S.; Htwe, N.M.; Jacob, J. Ecology and Distribution of Leptospira spp., Reservoir Hosts and Environmental Interaction in Sri Lanka, with Identification of a New Strain. PLoS Neglected Trop. Dis. 2022, 16, e0010757. [Google Scholar] [CrossRef]
- Muhd, Z.; Khor, K.H.; Lau, S.F. Serology, Molecular and Bacteriology of Leptospira spp. among Humans and Animals in Southeast Asia from 2011-2021: A Review. JVM 2024, 36, 13–30. [Google Scholar] [CrossRef]
- Bergmann Esteves, S.; Moreira Santos, C.; Ferreira Salgado, F.; Paldês Gonçales, A.; Gil Alves Guilloux, A.; Marinelli Martins, C.; Kuribaiashi Hagiwara, M.; Alonso Miotto, B. Efficacy of Commercially Available Vaccines against Canine Leptospirosis: A Systematic Review and Meta-Analysis. Vaccine 2022, 40, 1722–1740. [Google Scholar] [CrossRef]
- Vyn, C.M.; Libera, K.C.; Jardine, C.M.; Grant, L.E. Canine Leptospirosis: A One Health Approach for Improved Surveillance, Prevention, and Interdisciplinary Collaboration. Can. Vet. J. 2024, 65, 609–612. [Google Scholar]
- Bohl, J.A.; Lay, S.; Chea, S.; Ahyong, V.; Parker, D.M.; Gallagher, S.; Fintzi, J.; Man, S.; Ponce, A.; Sreng, S.; et al. Discovering Disease-Causing Pathogens in Resource-Scarce Southeast Asia Using a Global Metagenomic Pathogen Monitoring System. Proc. Natl. Acad. Sci. USA 2022. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Sayama, T. Apip Impact of Climate Change on Flood Inundation in a Tropical River Basin in Indonesia. Prog. Earth Planet. Sci. 2021, 8, 5. [Google Scholar] [CrossRef]
- Thibeaux, R.; Geroult, S.; Benezech, C.; Chabaud, S.; Soupé-Gilbert, M.-E.; Girault, D.; Bierque, E.; Goarant, C. Seeking the Environmental Source of Leptospirosis Reveals Durable Bacterial Viability in River Soils. PLoS Neglected Trop. Dis. 2017, 11, e0005414. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.; Costa, F.; Ribeiro, G.S.; Carvalho, M.S.; Reis, R.B.; Nery, N., Jr.; Pischel, L.; Gouveia, E.L.; Santos, A.C.; Queiroz, A.; et al. Rainfall and Other Meteorological Factors as Drivers of Urban Transmission of Leptospirosis. PLoS Neglected Trop. Dis. 2022, 16, e0007507. [Google Scholar] [CrossRef]
- Sievers, B.L.; Hyder, S.; Claes, F.; Karlsson, E.A. Ingrained: Rice Farming and the Risk of Zoonotic Spillover, Examples from Cambodia. One Health 2024, 18, 100696. [Google Scholar] [CrossRef]
- Dwisiswanarum, B.; Umniyati, S.R.; Qaimumanazalla, H.; Wiratama, B.S.; Ramadona, A.L. Relationship of Environmental Factors with Leptospirosis Incidence in Southeast Asia. J. Kesehat. Masy. 2024, 19, 616–622. [Google Scholar] [CrossRef]
- Porusia, M.; Andari, A.F.D.; Wulandari, W.; Chotklang, D. Risk Factors of Leptospirosis Incidence in Agricultural Area. Int. J. Public Health Sci. (IJPHS) 2021, 10, 574–580. [Google Scholar] [CrossRef]
- Herrera, J.P.; Herrera, J.P.; Wickenkamp, N.R.; Turpin, M.; Wickenkamp, N.R.; Baudino, F.; Turpin, M.; Baudino, F.; Tortosa, P.; Goodman, S.M.; et al. Effects of Land Use, Habitat Characteristics, and Small Mammal Community Composition on Leptospira Prevalence in Northeast Madagascar. PLoS Neglected Trop. Dis. 2020, 14, e0008946. [Google Scholar] [CrossRef]
- Shah, H.A.; Huxley, P.; Elmes, J.; Murray, K.A. Agricultural Land-Uses Consistently Exacerbate Infectious Disease Risks in Southeast Asia. Nat. Commun. 2019, 10, 4299. [Google Scholar] [CrossRef]
- Baharom, M.; Ahmad, N.; Hod, R.; Ja’afar, M.H.; Arsad, F.S.; Tangang, F.; Ismail, R.; Mohamed, N.; Mohd Radi, M.F.; Osman, Y. Environmental and Occupational Factors Associated with Leptospirosis: A Systematic Review. Heliyon 2024, 10, e23473. [Google Scholar] [CrossRef]
- Dubey, S.; Singh, R.; Gupta, B.; Patel, R.; Soni, D.; Dhakad, B.; Reddy, B.M.; Gupta, S.; Sharma, N. Leptospira: An Emerging Zoonotic Pathogen of Climate Change, Global Warming and Unplanned Urbanization: A Review. Architecture 2021, 10, 54. [Google Scholar] [CrossRef]
- Yusof, M.A.; Mohd-Taib, F.S.; Ishak, S.N.; Md-Nor, S.; Md-Sah, S.A.; Mohamed, N.Z.; Azhari, N.N.; Neela, V.; Sekawi, Z. Microhabitat Factors Influenced the Prevalence of Pathogenic Leptospira spp. in Small Mammal Host. Ecohealth 2019, 16, 260–274. [Google Scholar] [CrossRef]
- Rossa, P.D.; Tantrakarnapa, K.; Sutdan, D.; Kasetsinsombat, K.; Cosson, J.-F.; Supputamongkol, Y.; Chaisiri, K.; Tran, A.; Supputamongkol, S.; Binot, A.; et al. Environmental Factors and Public Health Policy Associated with Human and Rodent Infection by Leptospirosis: A Land Cover-Based Study in Nan Province, Thailand. Epidemiol. Infect. 2016, 144, 1550–1562. [Google Scholar] [CrossRef] [PubMed]
- Adamu, S.; Neela, V. Systematic Review of the Environmental and Socioeconomic Factors of Leptospirosis Transmission. Int. J. Infect. Dis. 2023, 130, S139. [Google Scholar] [CrossRef]
- Deria, A.; Ghannad, P.; Lee, Y.-C. Evaluating Implications of Flood Vulnerability Factors with Respect to Income Levels for Building Long-Term Disaster Resilience of Low-Income Communities. Int. J. Disaster Risk Reduct. 2020, 48, 101608. [Google Scholar] [CrossRef]
- Koks, E.E.; Jongman, B.; Husby, T.G.; Botzen, W.J.W. Combining Hazard, Exposure and Social Vulnerability to Provide Lessons for Flood Risk Management. Environ. Sci. Policy 2015, 47, 42–52. [Google Scholar] [CrossRef]
- Thibeaux, R.; Genthon, P.; Govan, R.; Selmaoui-Folcher, N.; Tramier, C.; Kainiu, M.; Soupé-Gilbert, M.-E.; Wijesuriya, K.; Goarant, C. Rainfall-Driven Resuspension of Pathogenic Leptospira in a Leptospirosis Hotspot. Sci. Total Environ. 2024, 911, 168700. [Google Scholar] [CrossRef]
- Gregorio, K.; Guzman, Y.; Alam, Z.F. A Systematic Review on the Association Between the Climatic Factors and the Prevalence of Disease in the Philippines with Respect to the Trends in Other Southeast Asian Countries. Bachelor’s Thesis, De La Salle University, Manila, Philippines, 2022. Available online: https://animorepository.dlsu.edu.ph/etdb_bio/14/ (accessed on 26 November 2025).
- Madsen, T.; Shine, R. Rainfall and Rats: Climatically-Driven Dynamics of a Tropical Rodent Population. Aust. J. Ecol. 1999, 24, 80–89. [Google Scholar] [CrossRef]
- Yanagihara, Y.; Villanueva, S.Y.A.M.; Nomura, N.; Ohno, M.; Sekiya, T.; Handabile, C.; Shingai, M.; Higashi, H.; Yoshida, S.; Masuzawa, T.; et al. Leptospira is an Environmental Bacterium That Grows in Waterlogged Soil. Microbiol. Spectr. 2022, 10, e02157-21. [Google Scholar] [CrossRef]
- Saito, M.; Miyahara, S.; Villanueva, S.Y.A.M.; Aramaki, N.; Ikejiri, M.; Kobayashi, Y.; Guevarra, J.P.; Masuzawa, T.; Gloriani, N.G.; Yanagihara, Y.; et al. PCR and Culture Identification of Pathogenic Leptospira spp. from Coastal Soil in Leyte, Philippines, after a Storm Surge during Super Typhoon Haiyan (Yolanda). Appl. Environ. Microbiol. 2014, 80, 6926–6932. [Google Scholar] [CrossRef]
- Lau, C.; Smythe, L.; Weinstein, P. Leptospirosis: An Emerging Disease in Travellers. Travel Med. Infect. Dis. 2010, 8, 33–39. [Google Scholar] [CrossRef]
- Cucchi, K.; Liu, R.; Collender, P.A.; Cheng, Q.; Li, C.; Hoover, C.M.; Chang, H.H.; Liang, S.; Yang, C.; Remais, J.V. Hydroclimatic Drivers of Highly Seasonal Leptospirosis Incidence Suggest Prominent Soil Reservoir of Pathogenic Leptospira spp. in Rural Western China. PLoS Neglected Trop. Dis. 2019, 13, e0007968. [Google Scholar] [CrossRef] [PubMed]
- Teles, A.J.; Bohm, B.C.; Silva, S.C.M.; Bruhn, F.R.P. Socio-Geographical Factors and Vulnerability to Leptospirosis in South Brazil. BMC Public Health 2023, 23, 1311. [Google Scholar] [CrossRef]
- Schneider, M.C.; Machado, G. Environmental and Socioeconomic Drivers in Infectious Disease. Lancet Planet. Health 2018, 2, e198–e199. [Google Scholar] [CrossRef]
- Galan, D.I.; Roess, A.A.; Pereira, S.V.C.; Schneider, M.C. Epidemiology of Human Leptospirosis in Urban and Rural Areas of Brazil, 2000–2015. PLoS ONE 2021, 16, e0247763. [Google Scholar] [CrossRef]
- Mwachui, M.A.; Crump, L.; Hartskeerl, R.; Zinsstag, J.; Hattendorf, J. Environmental and Behavioural Determinants of Leptospirosis Transmission: A Systematic Review. PLoS Neglected Trop. Dis. 2015, 9, e0003843. [Google Scholar] [CrossRef] [PubMed]
- Pedra, G.G. Predicting Environmental Risk of Transmission of Leptospirosis. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 2019. Available online: https://livrepository.liverpool.ac.uk/3056097 (accessed on 26 November 2025).
- Acosta-España, J.D.; Romero-Alvarez, D.; Luna, C.; Rodriguez-Morales, A.J. Infectious Disease Outbreaks in the Wake of Natural Flood Disasters: Global Patterns and Local Implications. Infez. Med. 2024, 32, 451–462. [Google Scholar] [CrossRef]
- Nazir, A.; Oduoye, M.O.; Nazir, A.; Uzoamaka, C.B.; Ali Muzammil, M.; Sakr, S.M.; Scott, G.Y.; Khan suheb, M. Unraveling the Leptospirosis Epidemic: Tales from the Philippine Outbreak—A Short Communication. Ann. Med. Surg. 2024, 86, 1238. [Google Scholar] [CrossRef]
- Dhewantara, P.W.; Lau, C.L.; Allan, K.J.; Hu, W.; Zhang, W.; Mamun, A.A.; Soares Magalhães, R.J. Spatial Epidemiological Approaches to Inform Leptospirosis Surveillance and Control: A Systematic Review and Critical Appraisal of Methods. Zoonoses Public Health 2019, 66, 185–206. [Google Scholar] [CrossRef]
- Saran, S.; Singh, P.; Kumar, V.; Chauhan, P. Review of Geospatial Technology for Infectious Disease Surveillance: Use Case on COVID-19. J. Indian Soc. Remote Sens. 2020, 48, 1121–1138. [Google Scholar] [CrossRef]
- de Oliveira Souza, I.P.; Uberti, M.S.; de Souza Tassinari, W. Geoprocessing and Spatial Analysis for Identifying Leptospirosis Risk Areas: A Systematic Review. Rev. Inst. Med. Trop. Sao Paulo 2020, 62, e35. [Google Scholar] [CrossRef]
- Maas, M.; de Vries, A.; Cuperus, T.; van der Giessen, J.; Kruisheer, M.; Janse, I.; Swart, A. A Predictive Risk Map for Human Leptospirosis Guiding Further Investigations in Brown Rats and Surface Water. Infect. Ecol. Epidemiol. 2023, 13, 2229583. [Google Scholar] [CrossRef] [PubMed]
- Isnan, S.; bin Abdullah, A.F.; Shariff, A.R.; Ishak, I.; Ismail, S.N.S.; Appanan, M.R.; Zhang, J.; Yin, G.; Zhang, Q.; Fang, J.; et al. Moran’s I and Geary’s C: Investigation of the Effects of Spatial Weight Matrices for Assessing the Distribution of Infectious Diseases. Geospat. Health 2019, 14. [Google Scholar] [CrossRef]
- Martin, B.M.; Sartorius, B.; Mayfield, H.J.; Restrepo, A.M.C.; Kiani, B.; Paulino, C.J.T.; Etienne, M.C.; Skewes-Ramm, R.; de St Aubin, M.; Dumas, D.; et al. Quantifying Spatial Variation in Environmental and Sociodemographic Drivers of Leptospirosis in the Dominican Republic Using a Geographically Weighted Regression Model. Sci. Rep. 2025, 15, 27073. [Google Scholar] [CrossRef] [PubMed]
- Mohammadinia, A.; Alimohammadi, A.; Saeidian, B. Efficiency of Geographically Weighted Regression in Modeling Human Leptospirosis Based on Environmental Factors in Gilan Province, Iran. Geosciences 2017, 7, 136. [Google Scholar] [CrossRef]
- Zhao, J.; Liao, J.; Huang, X.; Zhao, J.; Wang, Y.; Ren, J.; Wang, X.; Ding, F. Mapping Risk of Leptospirosis in China Using Environmental and Socioeconomic Data. BMC Infect. Dis. 2016, 16, 343. [Google Scholar] [CrossRef]
- Chadsuthi, S.; Chalvet-Monfray, K.; Geawduanglek, S.; Wongnak, P.; Cappelle, J. Spatial–Temporal Patterns and Risk Factors for Human Leptospirosis in Thailand, 2012–2018. Sci. Rep. 2022, 12, 5066. [Google Scholar] [CrossRef]
- Cadiz, N.R. UP NOAH in Building Resilient Philippines; Multi-Hazard and Risk Mapping for the Future. Procedia Eng. 2018, 212, 1018–1025. [Google Scholar] [CrossRef]
- Rahayu, S.; Sakundarno Adi, M.; Dian Saraswati, L. Mapping Of Leptospirosis Environmental Risk Factors and Determining the Level of Leptospirosis Vulnerable Zone In Demak District Using Remote Sensing Image. E3S Web Conf. 2018, 31, 06003. [Google Scholar] [CrossRef]
- Govan, R.; Scherrer, R.; Fougeron, B.; Laporte-Magoni, C.; Thibeaux, R.; Genthon, P.; Fournier-Viger, P.; Goarant, C.; Selmaoui-Folcher, N. Spatio-Temporal Risk Prediction of Leptospirosis: A Machine-Learning-Based Approach. PLoS Neglected Trop. Dis. 2025, 19, e0012755. [Google Scholar] [CrossRef] [PubMed]
- Warnasekara, J.; Agampodi, S.B.; Abeynayake, R. Time Series Models for Prediction of Leptospirosis in Different Climate Zones in Sri Lanka. bioRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Dhewantara, P.W.; Hu, W.; Zhang, W.; Yin, W.; Ding, F.; Mamun, A.; Magalhaes, R.J.S. Leptospirosis, Climate and Satellite-Based Environmental Factors: A Temporal Modeling. Online J. Public Health Inform. 2019, 11, e62516. [Google Scholar] [CrossRef]
- Ledien, J.; Sorn, S.; Hem, S.; Huy, R.; Buchy, P.; Tarantola, A.; Cappelle, J. Assessing the Performance of Remotely-Sensed Flooding Indicators and Their Potential Contribution to Early Warning for Leptospirosis in Cambodia. PLoS ONE 2017, 12, e0181044. [Google Scholar] [CrossRef]
- Ferreira, M.C.; Ferreira, M.F.M. Influence of Topographic and Hydrographic Factors on the Spatial Distribution of Leptospirosis Disease in São Paulo County, Brazil: An Approach Using Geospatial Techniques and GIS Analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B8, 197–201. [Google Scholar] [CrossRef]
- Barragan, V.; Olivas, S.; Keim, P.; Pearson, T. Critical Knowledge Gaps in Our Understanding of Environmental Cycling and Transmission of Leptospira spp. Appl. Environ. Microbiol. 2017, 83, e01190-17. [Google Scholar] [CrossRef]
- Garshasbi, D.; Kitiphaisannon, J.; Wongbumru, T.; Thanvisitthpon, N.T. Assessment of Future Urban Flood Risk of Thailand’s Bangkok Metropolis Using Geoprocessing and Machine Learning Algorithm. Environ. Sustain. Indic. 2025, 25, 100559. [Google Scholar] [CrossRef]
- Suwannachai, L.; Phumiphan, A.; Kuntiyawichai, K.; Supakosol, J.; Sriworamas, K.; Sivanpheng, O.; Kangrang, A. Integrating Hydrological Models for Improved Flash Flood Risk Assessment and Mitigation Strategies in Northeastern Thailand. Water 2025, 17, 345. [Google Scholar] [CrossRef]
- Tsumita, N.; Piyapong, S.; Kaewkluengklom, R.; Jaensirisak, S.; Fukuda, A. Flood Susceptibility Mapping of Urban Flood Risk: Comparing Autoencoder Multilayer Perceptron and Logistic Regression Models in Ubon Ratchathani, Thailand. Nat. Hazards 2025, 121, 17833–17867. [Google Scholar] [CrossRef]
- Kadir, M.A.A.; Manaf, R.A.; Mokhtar, S.A.; Ismail, L. Spatio-Temporal Analysis of Leptospirosis Hotspot Areas and Its Association With Hydroclimatic Factors in Selangor, Malaysia: Protocol for an Ecological Cross-Sectional Study. JMIR Res. Protoc. 2022, 12, e43712. [Google Scholar] [CrossRef]
- Ilma, K.; Martini, M.; Raharjo, M.R.M. Spatial Analysis and Risk Factors of Leptospirosis in Indonesia: A Systematic Review. J. Community Med. Public Health Res. 2022, 3, 129–139. [Google Scholar] [CrossRef]
- Krairojananan, P.; Wasuworawong, K.; Leepitakrat, S.; Monkanna, T.; Wanja, E.W.; Davidson, S.A.; Poole-Smith, B.K.; McCardle, P.W.; Mann, A.; Lindroth, E.J. Leptospirosis Risk Assessment in Rodent Populations and Environmental Reservoirs in Humanitarian Aid Settings in Thailand. Microorganisms 2025, 13, 29. [Google Scholar] [CrossRef]
- Wibowo, A.; Vazela, E.; Prasetyo, A.A.; Firdaus, A.F.; Fajrina, L.; Annisa, F.; Dinilah, I.; Nisrina, A.; Chairunnisa, F.; Aulia, F.P.; et al. Spatial Cluster Modeling of Rodent Infestations and Leptospirosis Risks in SE Asian Urban Areas. medRxiv 2022. [Google Scholar] [CrossRef]
- Taylor, C.; Brodbelt, D.C.; Dobson, B.; Catchpole, B.; O’Neill, D.G.; Stevens, K.B. Spatio-Temporal Distribution and Agroecological Factors Associated with Canine Leptospirosis in Great Britain. Prev. Vet. Med. 2021, 193, 105407. [Google Scholar] [CrossRef]
- Cristaldi, M.A.; Catry, T.; Pottier, A.; Herbreteau, V.; Roux, E.; Jacob, P.; Previtali, M.A. Determining the Spatial Distribution of Environmental and Socio-Economic Suitability for Human Leptospirosis in the Face of Limited Epidemiological Data. Infect. Dis. Poverty 2022, 11, 86. [Google Scholar] [CrossRef] [PubMed]
- Chacko, C.S.; Lakshmi, S.S.; Jayakumar, A.; Binu, S.L.; Pant, R.D.; Giri, A.; Chand, S.; UP, N. A Short Review on Leptospirosis: Clinical Manifestations, Diagnosis and Treatment. Clin. Epidemiol. Glob. Health 2021, 11, 100741. [Google Scholar] [CrossRef]
- Warnasekara, J.; Srimantha, S.; Kappagoda, C.; Jayasundara, D.; Senevirathna, I.; Matthias, M.; Agampodi, S.; Vinetz, J.M. Diagnostic Method-Based Underestimation of Leptospirosis in Clinical and Research Settings; an Experience from a Large Prospective Study in a High Endemic Setting. PLoS Neglected Trop. Dis. 2022, 16, e0010331. [Google Scholar] [CrossRef] [PubMed]
- Goarant, C.; Girault, D.; Thibeaux, R.; Soupé-Gilbert, M.-E. Isolation and Culture of Leptospira from Clinical and Environmental Samples. In Leptospira spp.; Methods in Molecular Biology; Humana: New York, NY, USA, 2020; Volume 2134, pp. 1–9. [Google Scholar] [CrossRef]
- Murray, C.K.; Gray, M.R.; Mende, K.; Parker, T.M.; Samir, A.; Rahman, B.A.; Habashy, E.E.; Hospenthal, D.R.; Pimentel, G. Use of Patient-Specific Leptospira Isolates in the Diagnosis of Leptospirosis Employing Microscopic Agglutination Testing (MAT). Trans. R. Soc. Trop. Med. Hyg. 2011, 105, 209–213. [Google Scholar] [CrossRef]
- Smythe, L.D.; Wuthiekanun, V.; Chierakul, W.; Suputtamongkol, Y.; Tiengrim, S.; Dohnt, M.F.; Symonds, M.L.; Slack, A.T.; Apiwattanaporn, A.; Chueasuwanchai, S.; et al. The Microscopic Agglutination Test (MAT) Is an Unreliable Predictor of Infecting Leptospira Serovar in Thailand. Am. J. Trop. Med. Hyg. 2009, 81, 695. [Google Scholar] [CrossRef] [PubMed]
- Niloofa, R.; Karunanayake, L.; de Silva, H.J.; Premawansa, S.; Rajapakse, S.; Handunnetti, S. Development of In-House ELISAs as an Alternative Method for the Serodiagnosis of Leptospirosis. Int. J. Infect. Dis. 2021, 105, 135–140. [Google Scholar] [CrossRef]
- Zin, N.; Othman, S.; Abd Rahman, F.; Abdul Rachman, A. Evaluation of IgM LAT and IgM ELISA as Compared to Microscopic Agglutination Test (MAT) for Early Diagnosis of Leptospira sp. Trop. Biomed. 2019, 36, 1071–1080. [Google Scholar]
- Valente, M.; Bramugy, J.; Keddie, S.H.; Hopkins, H.; Bassat, Q.; Baerenbold, O.; Bradley, J.; Falconer, J.; Keogh, R.H.; Newton, P.N.; et al. Diagnosis of Human Leptospirosis: Systematic Review and Meta-Analysis of the Diagnostic Accuracy of the Leptospira Microscopic Agglutination Test, PCR Targeting Lfb1, and IgM ELISA to Leptospira Fainei Serovar Hurstbridge. BMC Infect. Dis. 2024, 24, 168. [Google Scholar] [CrossRef] [PubMed]
- Courdurie, C.; Govic, Y.L.; Bourhy, P.; Alexer, D.; Pailla, K.; Theodose, R.; Cesaire, R.; Rosine, J.; Hochedez, P.; Olive, C. Evaluation of Different Serological Assays for Early Diagnosis of Leptospirosis in Martinique (French West Indies). PLoS Neglected Trop. Dis. 2017, 11, e0005678. [Google Scholar] [CrossRef] [PubMed]
- Nualnoi, T.; Lomlim, L.; Naorungroj, S. Accuracy of Rapid Lateral Flow Immunoassays for Human Leptospirosis Diagnosis: A Systematic Review and Meta-Analysis. PLoS Neglected Trop. Dis. 2024, 18, e0012174. [Google Scholar] [CrossRef]
- Maze, M.J.; Sharples, K.J.; Allan, K.J.; Rubach, M.P.; Crump, J.A. Diagnostic Accuracy of Leptospirosis Whole-Cell Lateral Flow Assays: A Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. 2019, 25, 437–444. [Google Scholar] [CrossRef]
- Podgoršek, D.; Ružić-Sabljić, E.; Logar, M.; Pavlović, A.; Remec, T.; Baklan, Z.; Pal, E.; Cerar, T. Evaluation of Real-Time PCR Targeting the lipL32 Gene for Diagnosis of Leptospira Infection. BMC Microbiol. 2020, 20, 59. [Google Scholar] [CrossRef]
- Yang, B.; de Vries, S.G.; Ahmed, A.; Visser, B.J.; Nagel, I.M.; Spijker, R.; Grobusch, M.P.; Hartskeerl, R.A.; Goris, M.G.; Leeflang, M.M. Nucleic Acid and Antigen Detection Tests for Leptospirosis. Cochrane Database Syst. Rev. 2019, 8, 1–163. [Google Scholar] [CrossRef]
- Hamer, M.; Watanabe, O.; Saraullo, V.; Ortega, F.; Sánchez, C.; Martínez, M.; Brihuega, B.; Grune Loffler, S. Optimization and Comparative Analysis of LAMP and PCR Techniques for the Detection of Leptospiral DNA in Golden Syrian Hamsters. Vet. Res. Commun. 2024, 48, 103–111. [Google Scholar] [CrossRef]
- Gunasegar, S.; Neela, V.K. Evaluation of Diagnostic Accuracy of Loop-Mediated Isothermal Amplification Method (LAMP) Compared with Polymerase Chain Reaction (PCR) for Leptospira spp. in Clinical Samples: A Systematic Review and Meta-Analysis. Diagn. Microbiol. Infect. Dis. 2021, 100, 115369. [Google Scholar] [CrossRef] [PubMed]
- Eugene, E.J.; Handunnetti, S.M.; Wickramasinghe, S.A.; Kalugalage, T.L.; Rodrigo, C.; Wickremesinghe, H.; Dikmadugoda, N.; Somaratne, P.; De Silva, H.J.; Rajapakse, S. Evaluation of Two Immunodiagnostic Tests for Early Rapid Diagnosis of Leptospirosis in Sri Lanka: A Preliminary Study. BMC Infect. Dis. 2015, 15, 319. [Google Scholar] [CrossRef]
- Goarant, C.; Bourhy, P.; D’Ortenzio, E.; Dartevelle, S.; Mauron, C.; Soupé-Gilbert, M.-E.; Bruyère-Ostells, L.; Gourinat, A.-C.; Picardeau, M.; Nato, F.; et al. Sensitivity and Specificity of a New Vertical Flow Rapid Diagnostic Test for the Serodiagnosis of Human Leptospirosis. PLoS Neglected Trop. Dis. 2013, 7, e2289. [Google Scholar] [CrossRef] [PubMed]
- Fontana, C.; Crussard, S.; Simon-Dufay, N.; Pialot, D.; Bomchil, N.; Reyes, J. Use of Flow Cytometry for Rapid and Accurate Enumeration of Live Pathogenic Leptospira Strains. J. Microbiol. Methods 2017, 132, 34–40. [Google Scholar] [CrossRef]
- Iwasaki, H.; Chagan-Yasutan, H.; Leano, P.S.A.; Koizumi, N.; Nakajima, C.; Taurustiati, D.; Hanan, F.; Lacuesta, T.L.; Ashino, Y.; Suzuki, Y.; et al. Combined Antibody and DNA Detection for Early Diagnosis of Leptospirosis after a Disaster. Diagn. Microbiol. Infect. Dis. 2016, 84, 287–291. [Google Scholar] [CrossRef]
- Philip, N.; Affendy, N.B.; Masri, S.N.; Yuhana, M.Y.; Than, L.T.L.; Sekawi, Z.; Neela, V.K. Combined PCR and MAT Improves the Early Diagnosis of the Biphasic Illness Leptospirosis. PLoS ONE 2020, 15, e0239069. [Google Scholar] [CrossRef] [PubMed]
- Suwancharoen, D.; Sittiwicheanwong, B.; Wiratsudakul, A. Evaluation of Loop-Mediated Isothermal Amplification Method (LAMP) for Pathogenic Leptospira spp. Detection with Leptospires Isolation and Real-Time PCR. J. Vet. Med. Sci. 2016, 78, 1299–1302. [Google Scholar] [CrossRef]
- Chaurasia, R.; Kamaraju, S.; Thresiamma, K.C.; Jayaprakash, C.; Eapen, C.K.; Sritharan, M. Urinary Leptospiral Sphingomyelinases as Diagnostic Markers of Leptospirosis in Dengue Patients Co-Infected with Leptospirosis. Diagn. Microbiol. Infect. Dis. 2025, 111, 116647. [Google Scholar] [CrossRef]
- Lam, J.-Y.; Yaacob, M.H.; Chee, H.-Y. Tapered Optical Fiber DNA Biosensor for Detecting Leptospira DNA. Asian Pac. J. Trop. Med. 2023, 16, 119. [Google Scholar] [CrossRef]
- Verma, V.; Kala, D.; Gupta, S.; Kumar, H.; Kaushal, A.; Kuča, K.; Cruz-Martins, N.; Kumar, D. Leptospira interrogans Outer Membrane Protein-Based Nanohybrid Sensor for the Diagnosis of Leptospirosis. Sensors 2021, 21, 2552. [Google Scholar] [CrossRef]
- Vishwakarma, A.; Meganathan, Y.; Ramya, M. Aptamer-Based Assay for Rapid Detection, Surveillance, and Screening of Pathogenic Leptospira in Water Samples. Sci. Rep. 2023, 13, 13379. [Google Scholar] [CrossRef]
- Almazar, C.A.; Mendoza, M.V.; Rivera, W.L. In Silico Approaches for the Identification of Aptamer Binding Interactions to Leptospira spp. Cell Surface Proteins. Trop. Med. Infect. Dis. 2023, 8, 125. [Google Scholar] [CrossRef]
- Saranya, E.; Vishwakarma, A.; Mandrekar, K.K.; Leela, K.V.; Ramya, M. A Label-Free DNAzyme-Based Colorimetric Sensor for the Detection of Leptospira interrogans. World J. Microbiol. Biotechnol. 2024, 40, 401. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, T.S.; Tang, T.-H.; Citartan, M. Isolation of a Novel DNA Aptamer against LipL32 as a Potential Diagnostic Agent for the Detection of Pathogenic Leptospira. Biotechnol. J. 2023, 18, 2200418. [Google Scholar] [CrossRef]
- Sri, S.; Dhand, C.; Rathee, J.; Ramakrishna, S.; Solanki, P.R. Microfluidic Based Biosensors as Point of Care Devices for Infectious Diseases Management. Sens. Lett. 2019, 17, 4–16. [Google Scholar] [CrossRef]
- Chin, V.K.; Lee, T.Y.; Lim, W.F.; Wan Shahriman, Y.W.Y.; Syafinaz, A.N.; Zamberi, S.; Maha, A. Leptospirosis in Human: Biomarkers in Host Immune Responses. Microbiol. Res. 2018, 207, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Kavela, S.; Vyas, P.; CP, J.; Kushwaha, S.K.; Majumdar, S.S.; Faisal, S.M. Use of an Integrated Multi-Omics Approach To Identify Molecular Mechanisms and Critical Factors Involved in the Pathogenesis of Leptospira. Microbiol. Spectr. 2023, 11, e03135-22. [Google Scholar] [CrossRef] [PubMed]
- Boonsilp, S.; Thaipadungpanit, J.; Amornchai, P.; Wuthiekanun, V.; Chierakul, W.; Limmathurotsakul, D.; Day, N.P.; Peacock, S.J. Molecular Detection and Speciation of Pathogenic Leptospira spp. in Blood from Patients with Culture-Negative Leptospirosis. BMC Infect. Dis. 2011, 11, 338. [Google Scholar] [CrossRef]
- Alia, S.N.; Joseph, N.; Philip, N.; Azhari, N.N.; Garba, B.; Masri, S.N.; Sekawi, Z.; Neela, V.K. Diagnostic Accuracy of Rapid Diagnostic Tests for the Early Detection of Leptospirosis. J. Infect. Public Health 2019, 12, 263–269. [Google Scholar] [CrossRef]
- Sykes, J.E.; Reagan, K.L.; Nally, J.E.; Galloway, R.L.; Haake, D.A. Role of Diagnostics in Epidemiology, Management, Surveillance, and Control of Leptospirosis. Pathogens 2022, 11, 395. [Google Scholar] [CrossRef]
- Munoz-Zanzi, C.; Groene, E.; Morawski, B.M.; Bonner, K.; Costa, F.; Bertherat, E.; Schneider, M.C. A Systematic Literature Review of Leptospirosis Outbreaks Worldwide, 1970–2012. Rev. Panam. Salud Pública 2020, 44, e78. [Google Scholar] [CrossRef]
- Muñoz-Zanzi, C.; Dreyfus, A.; Limothai, U.; Foley, W.; Srisawat, N.; Picardeau, M.; Haake, D.A. Leptospirosis—Improving Healthcare Outcomes for a Neglected Tropical Disease. Open Forum Infect. Dis. 2025, 12, ofaf035. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.J.; Oosterhof, H.; Nisa, S.; Haack, N.A.; Wilkinson, D.A.; Aberdein, D.; Russell, J.C.; Vallée, É.; Collins-Emerson, J.; Heuer, C.; et al. A Cross-Sectional Investigation of Leptospira at the Wildlife-Livestock Interface in New Zealand. PLoS Neglected Trop. Dis. 2023, 17, e0011624. [Google Scholar] [CrossRef]
- Sandoval, K.L.; Cada, K.J.S.; Dimasin, R.V.D.; Labana, R.V. A One Health Approach to the Prevention, Control, and Management of Leptospirosis: A Scoping Review. Discov. Public Health 2025, 22, 108. [Google Scholar] [CrossRef]
- Musso, D.; La Scola, B. Laboratory Diagnosis of Leptospirosis: A Challenge. J. Microbiol. Immunol. Infect. 2013, 46, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Bashiru, G.; Bahaman, A.R. Advances & Challenges in Leptospiral Vaccine Development. Indian J. Med. Res. 2018, 147. [Google Scholar] [CrossRef]
- Azevedo, I.; Amamura, T.A.; Isaac, L. Human Leptospirosis: In Search for a Better Vaccine. Scand. J. Immunol. 2023, 98, e13316. [Google Scholar] [CrossRef]


| Country | Study Years/Setting | Sampling Population | Assay (Cut-Off) | Reported Seroprevalence | References |
|---|---|---|---|---|---|
| Cambodia | 2007–2009 community febrile surveillance (Kampong Cham) | Febrile subjects < 20 years old; 2044 subjects, 2358 convalescent samples | IgM ELISA on convalescent; MAT confirmation on seroconverters (MAT ≥ 1:100 used for confirmation) | IgM convalescent positive: 630/2358 = 26.7%; seroconversions (acute negative → convalescent positive): 100 seroconversions among paired samples (15.8% of ELISA-positives); MAT-confirmed seroconversions: 17/2358 = 0.72% overall | [19] |
| Vietnam | November-December 2019 (North, northern Central, South Vietnam) | Healthy adult surveys (N = 600 blood samples) | MAT ≥ 1:100 | 9.5% in asymptomatic Vietnamese population | [20,21,22] |
| Community surveys in southern Vietnam (March 2003) | Primary school aged children 7–12 years old (N = 961 blood samples) | ELISA-IgG and IgM | ELISA-IgG: 12.8% (ages 7–12 years); child cohort seroconversion ~10.4% over 3 years in one cohort; ELISA-IgM: 5.4% | ||
| Cross-sectional study in the Mekong Delta | Randomly selected participants aged 15–60 (N = 1400 blood samples) | Variable MAT cut-offs | ~11.2–20.5% (overall reported ~18.8%) | ||
| Lao PDR | Reported in regional synthesis/surveys (rural) | Rural adult communities (age 15–78 y/o) | MAT ≥ 1:100 | ~23.9% in rural samples | [23] |
| Thailand | Samples collected March–September 2020 (blood donors) | Healthy blood donors across 5 regions (N = 1053) | MAT (panel) and anti- IgG ELISA (commercial genus-level ELISA) | MAT: no evidence of recent infection among donors; IgG ELISA positives: 18/1053 = 1.7% (past exposure) | [24,25,26] |
| 2010–2015 (humans and livestock) | N = 1990 human serum samples | MAT ≥ 1:100 | 23.7% | ||
| Hospital-based (2001–2012; 2 periods of patient recruitment) | Febrile patients | IFA ≥ 1:100 | 40% (first period) 12.7% (second period) | ||
| Indonesia | Surveys and flood-associated sampling (reported in regional review) from the early 2000s | Small community/outbreak sample sets (examples: N = 139 and N = 418) | MAT/serology described in review (method details variable across reports) | 18.7% of 139 (survey), 12.0% of 418 (flood associated) | [16] |
| Philippines | January 2017–April 2018 (Metro Manila) | Cross-sectional (N = 105 employed sewer workers) | MAT ≥ 1:100 | 4.8% (5/105) | [27] |
| Malaysia | 2018 (wet market workers in Kelantan) | 232 respondents (cross-sectional study) | MAT ≥ 1:100 | 33.6% | [28] |
| Other SEA countries (Myanmar, Singapore, Brunei, Timor-Leste) | Data coverage variable; many country-level gaps noted in regional reviews | Few representative studies, comparable community serosurveys located in the retrieved set | Reporting inconsistent; occupational/small group studies | Representative, comparable, up-to-date seroprevalence estimates not found in the retrieved evidence for several countries | [29,30,31] |
| Country | Species | Representative Study (Years) | Sample Size (If Reported) | Assay (Cut-Off) | Reported Seroprevalence | Predominant Serogroups/Serovars | References |
|---|---|---|---|---|---|---|---|
| Thailand | Cattle | National cross-sectional survey | N = 9288 cattle | MAT; 24-serovar panel; cut-off ≥ 1:50 | 9.9% (95% CI 9.3–10.5) | Ranarum, Sejroe, Mini (highest among cattle MAT positives) | [32] |
| Buffalo (water buffalo) | National cross-sectional survey | N = 1376 buffaloes | MAT; 24-serovar panel; cut-off ≥ 1:50 | 30.5% (95% CI 28.1–32.9) | Sejroe, Mini, Pomona | ||
| Pigs | National cross-sectional survey | N = 1898 pigs | MAT; 24-serovar panel; cut-off ≥ 1:50 | 10.8% (95% CI 9.5–12.3) | Ranarum, Pomona, Bratislava | ||
| Thailand | Cattle, buffalo, pigs (passive surveillance) | Surveillance dataset (2010–2015) | N = 7218 (cattle 3648; buffalo 432; pigs 3138) | MAT; 23-serovar panel; cut-off ≥ 1:100 | Cattle 28.1%; buffalo 24.8%; pigs 11.3% | Bratislava, Ranarum, Sejroe, Shermani, Tarassovi | [25] |
| Vietnam | Buffaloes | Multi-species cross-sectional (provincial) 2021 | N = 1205 animals (multi-species) n = 52 | MAT; 25-serovar panel; cut-off ≥ 1:100 (also reported at ≥1:200) | 44.2% | Hebdomadis, Patoc, Castellonis, Javanica (Javanica predominant at higher cut-off) | [33] |
| Cattle | Multi-species cross-sectional (provincial) 2021 | n = 233 | MAT; cut-off ≥ 1:100 | 24.9% | Diverse (15 serovars detected among cattle in study) | ||
| Pigs | Multi-species cross-sectional (provincial) 2021 | n = 381 | MAT; cut-off ≥ 1:100 | 10.2% | Javanica among serovars detected | ||
| Dogs, Cats, Rats | Multi-species cross-sectional (provincial) 2021 | n = 219 (dogs) n = 164 (cats) n = 156 (rats) | MAT; cut-off ≥ 1:100 | Dogs: 32.9%; cats: 12.2%; rats: 16.0% | Hebdomadis, Canicola/Javanica/others (varied) | ||
| Malaysia | Cattle (selected subnational studies) | Multiple studies summarized in national review (1976–2023) | varied (example Kelantan n reported in original studies) | MAT (cut-offs variable: commonly 1:80–1:100 reported), some PCR and culture | Heterogenous: e.g., Kelantan 81.7% (one 2018 subnational survey) vs. other studies ~14% | Bataviae, Javanica, Ballum, Icterohaemorrhagiae, Canicola, Pomona, Hardjo/Hardjobovis | [29] |
| Pigs | Selected PCR/serology | N = 81 (PCR) N = 869 (MAT) | PCR (lipL32/16S) and MAT cut-off 1:40 | PCR: ~6%; MAT: 16.0% | Pomona | [29,35] | |
| Dogs and Cats | Multiple local studies synthesized (1976–2023) | Dog studies include working dogs, shelters, clinical cases; sample sizes variable | MAT (cut-offs variable; e.g., 1:80–1:100); some PCR on clinical cases/urine | Dogs: working dogs low (≈3–6%), shelters/diseased dogs high (up to ≈42.7% MAT and PCR in some studies); cats: ≈15–26% MAT in some reports | Bataviae, Javanica, Icterohaemorrhagiae, Canicola, Australis | [29,36,37] | |
| Rodents | Multiple local studies summarized | Sample sizes vary by study | PCR (lipL32), culture, MAT in some studies | PCR kidney prevalence reported in some studies up to >30–50% (study-dependent); culture/MAT also reported | Icterohaemorrhagiae, Bataviae, Javanica, and Ballum are commonly reported | [29] | |
| Regional (meta-analysis) | Pigs (regional) | Meta-analysis of SEA studies (various years) | Pooled/compiled n across studies (N = 9219) | MAT studies heterogeneous (cut-offs 1:20–1:400; most use ≥1:100) | Reported pig seroprevalence ranged broadly across studies (8.2% to 73.4%) | Serogroups vary by country; panel composition affects detection | [34] |
| Regional (meta-analysis) | Rodents, cattle, dogs | Meta-analysis/regional reviews | Pooled/compiled n across studies (N = 9219) | MAT panels varied; PCR methods used in some studies | Rodents highly heterogeneous (6–>90% reported in global/regional compilations); cattle intermediate; dogs moderate | Icterohaemorrhagiae is often prevalent in rats; livestock serovars host-associated (e.g., Hardjo in cattle, Pomona in pigs) | [34] |
| Factors | Consequence Affecting Leptospirosis Transmission | References |
|---|---|---|
| Rainfall | - Increased volume of contaminated water Increase in the population of rodents Heavy precipitation contributes to outbreaks And creates sustained wet environments for Leptospira survival | [12,15,70] |
| Temperature and humidity | - Creates optimal conditions for Leptospira sp. survival - Warm conditions support recreational water activities increasing risk of exposure | [12,14,71] |
| Seasonal pattern | - Outbreaks manifest during the rainy season - Coincides with agricultural calendars promoting increased contact to the pathogen | [12,14,72] |
| Land use | - Agricultural areas are conducive to rodent infestations e.g., rice paddy fields - Wet fields increase human–pathogen contact - Ineffective water management practices cause waterlogging | [73,74,75,76,77] |
| Vegetation cover | - Dense vegetation provides microclimatic conditions that support rodent populations - Forested areas are associated with higher leptospiral carriage in rodents | [78,79,80,81] |
| Urban settings | - Reduction in biodiversity, loss of habitat proliferation of wildlife in urban areas - Poor sanitation, informal infrastructure, frequent contact with floodwater | [82,83,84] |
| Rural settings | - Exposure to floodwaters - Agricultural practices encourage bacterial proliferation | [73,74,75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Almazar, C.A.; Montala, Y.B.; Rivera, W.L. Leptospirosis in Southeast Asia: Investigating Seroprevalence, Transmission Patterns, and Diagnostic Challenges. Trop. Med. Infect. Dis. 2026, 11, 18. https://doi.org/10.3390/tropicalmed11010018
Almazar CA, Montala YB, Rivera WL. Leptospirosis in Southeast Asia: Investigating Seroprevalence, Transmission Patterns, and Diagnostic Challenges. Tropical Medicine and Infectious Disease. 2026; 11(1):18. https://doi.org/10.3390/tropicalmed11010018
Chicago/Turabian StyleAlmazar, Chembie A., Yvette B. Montala, and Windell L. Rivera. 2026. "Leptospirosis in Southeast Asia: Investigating Seroprevalence, Transmission Patterns, and Diagnostic Challenges" Tropical Medicine and Infectious Disease 11, no. 1: 18. https://doi.org/10.3390/tropicalmed11010018
APA StyleAlmazar, C. A., Montala, Y. B., & Rivera, W. L. (2026). Leptospirosis in Southeast Asia: Investigating Seroprevalence, Transmission Patterns, and Diagnostic Challenges. Tropical Medicine and Infectious Disease, 11(1), 18. https://doi.org/10.3390/tropicalmed11010018

