Changing Conditions: Global Warming-Related Hazards and Vulnerable Rural Populations in Mediterranean Europe
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Selection Process
2.4. Data Extraction and Synthesis
3. Hazards Related to High Temperatures in the Mediterranean Region
3.1. Heatwaves
3.2. Droughts
3.3. Wildfires
4. Multi-Hazard Interactions: Change Conditions
5. Depopulation Trends in Mediterranean Rural Areas
6. Challenges of Vulnerable Rural Communities Facing Multiple Hazards
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ONU News. OMM Confirma 2021 Entre os Sete Anos Mais Quentes da História. Perspectiva Global Reportagens Humanas. 19 January 2022. Available online: https://news.un.org/pt/story/2022/01/1776892 (accessed on 11 February 2022).
- Berkeley Earth. Global Temperature Report for 2021. Berkeley, California. 2022. Available online: http://berkeleyearth.org/2019-temperatures/ (accessed on 12 December 2023).
- Ali, E.; Cramer, W.; Carnicer, J.; Georgopoulou, E.; Hilmi, N.J.M.; Le Cozannet, G.; Lionello, P. Cross-Chapter Paper 4: Mediterranean Region. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, B.R.H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 2233–2272. [Google Scholar] [CrossRef]
- Portner, H.; Roberts, D.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Ara Begum, R.; Betts, R.; Bezner Kerr, R.; Biesbroek, R.; et al. Climate Change 2022: Impacts, Adaptation and Vulnerability. The Netherlands. 2022. Available online: https://edepot.wur.nl/565644 (accessed on 12 December 2023).
- IPMA. Seca e Desertificação em Portugal. Instituto Português do Mar e da Atmosfera. 2020. Available online: https://www.ipma.pt/pt/media/noticias/news.detail.jsp?f=/pt/media/noticias/arquivo/2020/seca_desertificacao_portugal_062020&print=true (accessed on 15 February 2022).
- Ferreira, T.M.; Santos, P.P. An Introduction to Multi-Hazard Risk Interactions Towards Resilient and Sustainable Cities; Springer Nature: Singapore, 2023. [Google Scholar] [CrossRef]
- Gill, J.C.; Malamud, B.D. Reviewing and visualizing the interactions of natural hazards. Rev. Geophys. 2014, 52, 680–722. [Google Scholar] [CrossRef]
- Tilloy, A.; Malamud, B.D.; Winter, H.; Joly-Laugel, A. A review of quantification methodologies for multi-hazard interrelationships. Earth-Sci. Rev. 2019, 196, 102881. [Google Scholar] [CrossRef]
- Kappes, M.S.; Keiler, M.; von Elverfeldt, K.; Glade, T. Challenges of analyzing multi-hazard risk: A review. Nat. Hazards 2012, 64, 1925–1958. [Google Scholar] [CrossRef]
- Terzi, S.; Torresan, S.; Schneiderbauer, S.; Critto, A.; Zebisch, M.; Marcomini, A. Multi-risk assessment in mountain regions: A review of modelling approaches for climate change adaptation. J. Environ. Manag. 2019, 232, 759–771. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2001, the Scientific Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; Volume 12. [Google Scholar] [CrossRef]
- Amraoui, M.; Liberato, M.L.R.; Calado, T.J.; DaCamara, C.C.; Coelho, L.P.; Trigo, R.M.; Gouveia, C.M. Fire activity over Mediterranean Europe based on information from Meteosat-8. For. Ecol. Manag. 2013, 294, 62–75. [Google Scholar] [CrossRef]
- Cross, J.A. Megacities and small towns: Different perspectives on hazard vulnerability. Environ. Hazards 2001, 3, 63–80. [Google Scholar] [CrossRef]
- ESPON. Shrinking Rural Regions in Europe. 2017, pp. 1–15. Available online: https://www.espon.eu/sites/default/files/attachments/ESPON%20Policy%20Brief%20on%20Shrinking%20Rural%20Regions.pdf (accessed on 3 January 2024).
- Kelly, C.; Ferrara, A.; Wilson, G.A.; Ripullone, F.; Nolè, A.; Harmer, N.; Salvati, L. Community resilience and land degradation in forest and shrubland socio-ecological systems: Evidence from Gorgoglione, Basilicata, Italy. Land Use Policy 2015, 46, 11–20. [Google Scholar] [CrossRef]
- East, M. Community-led approaches and interventions for the regeneration of abandoned towns in Southern Italy. Ecocycles 2016, 2, 18–25. [Google Scholar] [CrossRef]
- Tenza-Peral, A.; Pérez-Ibarra, I.; Breceda, A.; Martínez-Fernández, J.; Giménez, A. Can local policy options reverse the decline process of small and marginalized rural areas influenced by global change? Environ. Sci. Policy 2022, 127, 57–65. [Google Scholar] [CrossRef]
- Syssner, J. Pathways to Demographic Adaptation; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Yang, Y.; Yang, Q.; Hong, J. What is driving the abandonment of villages in the mountains of Southeast China? Land Degrad. Dev. 2019, 30, 1183–1192. [Google Scholar] [CrossRef]
- Güler, K.; Kâhya, Y. Developing an approach for conservation of abandoned rural settlements in Turkey. A/Z ITU J. Fac. Archit. 2019, 16, 97–115. [Google Scholar] [CrossRef]
- Dérer, P. The Overpopulation Project Research and Outreach. Rethinking Depopulation and Land Abandonment—The Opportunity of Rewilding. 2018. Available online: https://overpopulation-project.com/rethinking-depopulation-and-land-abandonment-the-opportunity-of-rewilding/ (accessed on 4 March 2022).
- Colonico, M.; Tomao, A.; Ascoli, D.; Corona, P.; Giannino, F.; Moris, J.V.; Romano, R.; Salvati, L.; Barbati, A. Rural development funding and wildfire prevention: Evidences of spatial mismatches with fire activity. Land Use Policy 2022, 117, 106079. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, D.; Lu, Y. Machine learning-enabled regional multi-hazards risk assessment considering social vulnerability. Sci. Rep. 2023, 13, 13405. [Google Scholar] [CrossRef] [PubMed]
- Cáceres-Feria, R.; Hernández-Ramírez, M.; Ruiz-Ballesteros, E. Depopulation, community-based tourism, and community resilience in southwest Spain. J. Rural Stud. 2021, 88, 108–116. [Google Scholar] [CrossRef]
- Rad, A.M.; Abatzoglou, J.T.; Fleishman, E.; Mockrin, M.H.; Radeloff, V.C.; Pourmohamad, Y.; Cattau, M.; Johnson, J.M.; Higuera, P.; Nauslar, N.J.; et al. Social vulnerability of the people exposed to wildfires in U.S. West Coast states. Sci. Adv. 2023, 9, eadh4615. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Methodological Manual on Territorial Typologies, 2018th ed.; Manuals and Guidelines; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- FAO. Guidelines on Defining Rural Areas and Compiling Indicators for Development Policy. 2018. Available online: https://www.fao.org/3/ca6392en/ca6392en.pdf (accessed on 7 November 2022).
- Wehrli, K.; Guillod, B.P.; Hauser, M.; Leclair, M.; Seneviratne, S.I. Identifying Key Driving Processes of Major Recent Heat Waves. J. Geophys. Res. Atmos. 2019, 124, 11746–11765. [Google Scholar] [CrossRef]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Rousi, E.; Kornhuber, K.; Beobide-Arsuaga, G.; Luo, F.; Coumou, D. Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nat. Commun. 2022, 13, 3851. [Google Scholar] [CrossRef] [PubMed]
- Chergui, B.; Fahd, S.; Santos, X.; Pausas, J.G. Socioeconomic Factors Drive Fire-Regime Variability in the Mediterranean Basin. Ecosystems 2018, 21, 619–628. [Google Scholar] [CrossRef]
- Gouveia, C.M.; Bistinas, I.; Liberato, M.L.R.; Bastos, A.; Koutsias, N.; Trigo, R. The outstanding synergy between drought, heatwaves and fuel on the 2007 Southern Greece exceptional fire season. Agric. For. Meteorol. 2016, 218–219, 135–145. [Google Scholar] [CrossRef]
- Pausas, J.G.; Fernández-Muñoz, S. Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Clim. Chang. 2012, 110, 215–226. [Google Scholar] [CrossRef]
- World Meteorological Organization. Heatwave. 2022. Available online: https://wmo.int/topics/heatwave (accessed on 15 January 2024).
- UNDRR. Heatwave. PreventionWeb by United Nations Office for Disaster Risk. 2020. Available online: https://www.preventionweb.net/quick/78612 (accessed on 9 October 2022).
- C2ES. Heat Waves and Climate Change. Center for Climate and Energy Solutions. 2017. Available online: https://www.c2es.org/content/heat-waves-and-climate-change/ (accessed on 9 September 2022).
- Smerdon, J. Record-Breaking Heat Waves in US and EUROPE Prove Climate Change Is Already Here, Experts Say. Available online: https://abcnews.go.com/Technology/record-breaking-heat-waves-us-europe-prove-climate/story?id=87069737 (accessed on 20 July 2022).
- Copernicus Climate Change Service/ECMWF. Copernicus Climate Change Service. Surface Air Temperature for August 2022. 2022. Available online: https://climate.copernicus.eu/surface-air-temperature-august-2022 (accessed on 4 February 2024).
- WHO. Heatwaves. World Health Organization. 2021. Available online: https://www.who.int/health-topics/heatwaves#tab=tab_1 (accessed on 11 September 2022).
- Shumake-Guillemot, J.; Kristie, E. Issue Brief: Heatwave. Futureearth.Org 2019, 1–4. [Google Scholar]
- Dahl, M.H. The Panama Canal Is Running Dry: Climate Extremes Are Wreaking Havoc on Global Shipping. Foreing Policy Magazine. 15 January 2024. Available online: https://foreignpolicy.com/2024/01/15/panama-suez-canal-global-shipping-crisis-climate-change-drought/ (accessed on 25 January 2024).
- Leissner, J.; Kilian, R.; Kotova, L.; Jacob, D.; Mikolajewicz, U.; Broström, T.; Ashley-Smith, J.; Schellen, H.L.; Martens, M.; Van Schijndel, J.; et al. Climate for culture: Assessing the impact of climate change on the future indoor climate in historic buildings using simulations. Herit. Sci. 2015, 3, 38. [Google Scholar] [CrossRef]
- Bröde, P.; Fiala, D.; Błażejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Lobelia, ECMWF, Copernicus, and C3S. The UTCI Story Hub. 2021. Available online: https://utci.lobelia.earth/what-is-utci (accessed on 11 September 2022).
- Copernicus Climate Change Service/ECMWF. European State of the Climate. 2021. Available online: https://climate.copernicus.eu/esotc/2021/heat-and-cold-stress (accessed on 11 September 2022).
- Agarwal, A.; Dwivedi, S.; Ghanshyam, A. Summer heat: Making a consistent health impact. Indian J. Occup. Environ. Med. 2018, 22, 57. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A.; Armstrong, B. The impact of heat waves on mortality. Epidemiology 2011, 22, 68–73. [Google Scholar] [CrossRef]
- Kovats, R.S.; Kristie, L.E. Heatwaves and public health in Europe. Eur. J. Public Health 2006, 16, 592–599. [Google Scholar] [CrossRef]
- Hong, L.; Yan, M.M.; Zhang, Y.Q.; Wang, K.; Wang, Y.Q.; Luo, S.Q.; Wang, F. Global Burden of Cardiovascular Disease Attributable to High Temperature in 204 Countries and Territories from 1990 to 2019. Biomed. Environ. Sci. 2023, 36, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Nunes, T. Caracterização de Ondas de Calor Ocorridas em Portugal no Século XXI. 2017, pp. 1–180. Available online: https://comum.rcaap.pt/bitstream/10400.26/23010/1/Telma-Sofia-Santos-Nunes.pdf (accessed on 14 January 2024).
- Agency, E.E. Ensuring Quality of Life in Europe’s Cities and Towns, No. 5. Copenhagen. 2009. Available online: https://www.eea.europa.eu/publications/quality-of-life-in-Europes-cities-and-towns (accessed on 14 January 2024).
- Ballester, J.; Quijal-Zamorano, M.; Méndez Turrubiates, R.F.; Pegenaute, F.; Herrmann, F.R.; Robine, J.M.; Basagaña, X.; Tonne, C.; Antó, J.M.; Achebak, H. Heat-related mortality in Europe during the summer of 2022. Nat. Med. 2023, 29, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- García-León, D.; Casanueva, A.; Standardi, G.; Burgstall, A.; Flouris, A.D.; Nybo, L. Current and projected regional economic impacts of heatwaves in Europe. Nat. Commun. 2021, 12, 5807. [Google Scholar] [CrossRef]
- Robine, J.M.; Cheung, S.L.K.; Le Roy, S.; Van Oyen, H.; Griffiths, C.; Michel, J.P.; Herrmann, F.R. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus—Biol. 2008, 331, 171–178. [Google Scholar] [CrossRef]
- Lourenço, L.; Vieira, A. Catástrofes Naturais: Uma Abordagem Global; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2020. [Google Scholar] [CrossRef]
- Mircheva, B.; Tsekov, M.; Meyer, U.; Guerova, G. Anomalies of hydrological cycle components during the 2007 heat wave in Bulgaria. J. Atmos. Sol.-Terr. Phys. 2017, 165–166, 1–9. [Google Scholar] [CrossRef]
- WWA, Euro-Mediterranean Heat, Summer 2017. World Weather Atributtion. 2017. Available online: https://www.worldweatherattribution.org/euro-mediterranean-heat-summer-2017/ (accessed on 12 September 2022).
- Heffron, C.; Cereceda, R. The Record Breaking Heatwave That Is Gripping Northern Europe. Euronews. 20 July 2018. Available online: https://www.euronews.com/2018/07/19/the-record-breaking-heatwave-that-is-gripping-northern-europe (accessed on 22 January 2024).
- Coi, G.; Mathiesen, K. The Death Toll of Europe’s Heat Wave. Politico. 29 October 2021. Available online: https://www.politico.eu/article/europe-mediterranean-heatwaves-excess-deaths-climate-change-cop26-glasgow-ipcc/ (accessed on 12 September 2022).
- Kim, E. Human Rights Watch. Europe Heatwaves Disastrous for Older People, People with Disabilities. 2022. Available online: https://www.hrw.org/news/2022/08/12/europe-heatwaves-disastrous-older-people-people-disabilities (accessed on 11 September 2022).
- United Nations. WMO Warns of Frequent Heatwaves in Decades Ahead. United Nations News. 2022. Available online: https://news.un.org/en/story/2022/07/1122822 (accessed on 22 January 2024).
- TPN/Lusa. Portugal hits 47 °C. The Portugal News. 2022. Available online: https://www.theportugalnews.com/news/2022-07-15/portugal-hits-47c/68702 (accessed on 12 September 2022).
- Copernicus Climate Change Service/ECMWF. European Summer 2023: A Season of Contrasting Extremes|Copernicus. 2023. Available online: https://climate.copernicus.eu/european-summer-2023-season-contrasting-extremes# (accessed on 22 January 2024).
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Collins, R.; Kristensen, P.; Thyssen, N. Water Resources across Europe—Confronting Water Scarcity and Drought; Publications Office: Luxembourg, 2009. [Google Scholar] [CrossRef]
- NDMC. National Drought Mitigation Center. Types of Drought. 2018. Available online: https://drought.unl.edu/Education/DroughtIn-depth/TypesofDrought.aspx (accessed on 27 January 2024).
- Vivas, E.; Maia, R. Caracterização das principais situações de seca históricas em Portugal Continental—A importância da utilização de indicadores. In 2as Jornadas Hidráulica, Recur. Hídricos e Ambient; Faculdade de Engenharia da Universidade do Porto: Porto, Portugal, 2007; pp. 51–61. [Google Scholar]
- Wilhite, D.A. (Ed.) Drought and Water Crises: Science, Technology, and Management Issues, 1st ed.; CRC Press: Boca Raton, FL, USA, 2005; Available online: https://www.taylorfrancis.com/books/mono/10.1201/9781420028386/drought-water-crises-donald-wilhite (accessed on 24 January 2024). [CrossRef]
- European Commission. EDO—European Drought Observatory. Emergency Management Service by Copernicus Programme. 2022. Available online: https://edo.jrc.ec.europa.eu/edov2/php/index.php?id=1000 (accessed on 5 August 2022).
- European Commission. Drought Risk Atlas: Heightened Risk Threatens the Environment and the Economy; EU Science Hub Joint Research Centre: Brussels, Belgium, 2023. [Google Scholar]
- ANP/WWF. Vulnerabilidade de Portugal à Seca e Escassez de Água. 2019. Available online: https://d2ouvy59p0dg6k.cloudfront.net/downloads/relatorio_seca_e_escassez.pdf (accessed on 24 January 2024).
- Charpentier, A.; James, M.; Ali, H. Predicting drought and subsidence risks in France. Nat. Hazards Earth Syst. Sci 2022, 22, 2401–2418. [Google Scholar] [CrossRef]
- Makaya, E.; Rohse, M.; Day, R.; Vogel, C.; Mehta, L.; McEwen, L.; Rangecroft, S.; Van Loon, A.F. Water governance challenges in rural South Africa: Exploring institutional coordination in drought management. Water Policy 2020, 22, 519–540. [Google Scholar] [CrossRef]
- Natura, K.S. 2000 en la Región Mediterránea; European Commission: Brussels, Belgium, 2010. [CrossRef]
- Charnley, S. Less Fuel for the Fire: Wildfire Mitigation through Hazardous Fuels Reduction. In Research Counts 3(4); Natural Hazards Center, University of Colorado Boulder: Boulder, CO, USA, 2020; Available online: https://hazards.colorado.edu/news/research/less-fuel-for-the-fire-wildfire-mitigation-through-hazardous-fuels-reduction (accessed on 23 February 2022).
- Pereira, M.; Trigo, R.; Da Camara, C.; Pereira, J.; Leite, S. Synoptic patterns associated with large summer forest fires in Portugal. Agric. For. Meteorol. 2005, 129, 11–25. [Google Scholar] [CrossRef]
- Union Civil Protection Knowledge Network. Forest Fires/Wildfires. Available online: https://civil-protection-knowledge-network.europa.eu/eu-overview-risks/natural-disaster-risks/forest-fires-wildfires (accessed on 31 March 2023).
- Rego, F.M.C.C.; Rodríguez, J.M.M.; Calzada, V.R.V.; Xanthopoulos, G. Forest Fires: Sparking Firesmart Policies in the EU; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A review of the main driving factors of forest fire ignition over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Sjöström, J.; Granström, A. Human activity and demographics drive the fire regime in a highly developed European boreal region. Fire Saf. J. 2023, 136, 103743. [Google Scholar] [CrossRef]
- Tedim, F.; Xanthopoulos, G.; Leone, V. Forest Fires in Europe: Facts and Challenges; Elsevier Inc.: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Drury, S. Fuel Continuity. In Encyclopedia of Wildfires and Wildland-Urban Interface Fires; Springer: Cham, Switzerland, 2020; pp. 513–516. [Google Scholar] [CrossRef]
- Sarris, D.; Koutsias, N. Ecological adaptations of plants to drought influencing the recent fire regime in the Mediterranean. Agric. For. Meteorol. 2014, 184, 158–169. [Google Scholar] [CrossRef]
- Rodrigues, M.; Trigo, R.M.; Vega-García, C.; Cardil, A. Identifying large fire weather typologies in the Iberian Peninsula. Agric. For. Meteorol. 2020, 280, 107789. [Google Scholar] [CrossRef]
- Vitolo, C.; Di Napoli, C.; Di Giuseppe, F.; Cloke, H.L.; Pappenberger, F. Mapping combined wildfire and heat stress hazards to improve evidence-based decision making. Environ. Int. 2019, 127, 21–34. [Google Scholar] [CrossRef] [PubMed]
- EFFIS. EFFIS Estimates for European Union. 2023. Available online: https://forest-fire.emergency.copernicus.eu/apps/effis.statistics/estimates (accessed on 10 January 2024).
- EFFIS. Copernicus by the European Forest Fire Information System. Wildfire Risk Viewer. 2022. Available online: https://effis.jrc.ec.europa.eu/apps/fire.risk.viewer/ (accessed on 18 September 2022).
- Schug, F.; Bar-Massada, A.; Carlson, A.R.; Cox, H.; Hawbaker, T.J.; Helmers, D.; Hostert, P.; Kaim, D.; Kasraee, N.K.; Martinuzzi, S.; et al. The global wildland–urban interface. Nature 2023, 621, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Sirca, C.; Casula, F.; Bouillon, C.; García, B.F.; Fernández Ramiro, M.M.; Molina, B.V.; Spano, D. A wildfire risk oriented GIS tool for mapping Rural-Urban Interfaces. Environ. Model. Softw. 2017, 94, 36–47. [Google Scholar] [CrossRef]
- Bailey, R.; Yeo, J. The Burning Issue—Managing Wildfire Risk. 2019. Available online: https://www.marshmclennan.com/content/dam/mmc-web/insights/publications/2019/oct/THE%20BURNING%20ISSUE%20-%20MANAGING%20WILDFIRE%20RISK__screen_final.pdf (accessed on 15 May 2022).
- Ball, P. Spreading like Wildfire. Nature 2000. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Risk Management and Decision-Making in Relation to Sustainable Development; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Kappes, M.S.; Papathoma-Köhle, M.; Keiler, M. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 2012, 32, 577–590. [Google Scholar] [CrossRef]
- Lee, R.; White, C.J.; Adnan, M.S.G.; Douglas, J.; Mahecha, M.D.; O’Loughlin, F.E.; Patelli, E.; Ramos, A.M.; Roberts, M.J.; Martius, O.; et al. Reclassifying historical disasters: From single to multi-hazards. Sci. Total Environ. 2024, 912, 169120. [Google Scholar] [CrossRef] [PubMed]
- Tschumi, E.; Zscheischler, J. Countrywide climate features during recorded climate-related disasters. Clim. Chang. 2020, 158, 593–609. [Google Scholar] [CrossRef] [PubMed]
- Zscheischler, J.; Martius, O.; Westra, S.; Bevacqua, E.; Raymond, C.; Horton, R.M.; van den Hurk, B.; AghaKouchak, A.; Jézéquel, A.; Mahecha, M.D.; et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 2020, 1, 333–347. [Google Scholar] [CrossRef]
- Hochrainer-Stigler, S.; Trogrlić Šakić, R.; Reiter, K.; Ward, P.J.; de Ruiter, M.C.; Duncan, M.J.; Torresan, S.; Ciurean, R.; Mysiak, J.; Stuparu, D.; et al. Toward a framework for systemic multi-hazard and multi-risk assessment and management. iScience 2023, 26, 106736. [Google Scholar] [CrossRef]
- Jones, M.W.; Smith, A.J.P.; Betts, R.A.; Canadell, J.G.; Prentice, I.C.; Le Que, C. Climate Change Increases the Risk of Wildfires; Tyndall Centre for Climate Change Research: Norwich, UK, 2020. [Google Scholar]
- De Angeli, S.; Malamud, B.D.; Rossi, L.; Taylor, F.E.; Trasforini, E.; Rudari, R. A multi-hazard framework for spatial-temporal impact analysis. Int. J. Disaster Risk Reduct 2022, 73, 102829. [Google Scholar] [CrossRef]
- Zscheischler, J.; Seneviratne, S.I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 2017, 3, e1700263. [Google Scholar] [CrossRef] [PubMed]
- Sutanto, S.J.; Vitolo, C.; Di Napoli, C.; D’Andrea, M.; Van Lanen, H.A.J. Droughts, and fires: Exploring compound and cascading dry hazards at the pan-European scale. Environ. Int. 2020, 134, 105276. [Google Scholar] [CrossRef]
- Moreira, F.; Rego, F.C.; Ferreira, P.G. Temporal, (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: Implications for fire occurrence. Landsc. Ecol. 2001, 16, 557–567. [Google Scholar] [CrossRef]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape—Wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [PubMed]
- Moriondo, M.; Good, P.; Durao, R.; Bindi, M.; Giannakopoulos, C.; Corte Real, J. Potential impact of climate change on fire risk in the Mediterranean area. Clim. Res. 2006, 31, 85–95. [Google Scholar] [CrossRef]
- Schmitz, O.J.; Sylvén, M.; Atwood, T.B.; Bakker, E.S.; Berzaghi, F.; Brodie, J.F.; Cromsigt, J.P.G.M.; Davies, A.B.; Leroux, S.J.; Schepers, F.J.; et al. Trophic rewilding can expand natural climate solutions. Nat. Clim. Chang. 2023, 13, 324–333. [Google Scholar] [CrossRef]
- Johnson, C.N.; Prior, L.D.; Archibald, S.; Poulos, H.M.; Barton, A.M.; Williamson, G.J.; Bowman, D.M.J.S. Can trophic rewilding reduce the impact of fire in a more flammable world? Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170443. [Google Scholar] [CrossRef] [PubMed]
- Zscheischler, J.; Westra, S.; Van Den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; Aghakouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Owolabi, T.A.; Sajjad, M. A global outlook on multi-hazard risk analysis: A systematic and scientometric review. Int. J. Disaster Risk Reduct 2023, 92, 103727. [Google Scholar] [CrossRef]
- Nugroho, A.; Mahdi; Triana, L.; Fitrah, A.U.; Hamid, A.H. Multi-hazard perception during COVID-19: Evidence from rural communities in West Sumatra, Indonesia. Int. J. Disaster Risk Reduct 2022, 77, 103075. [Google Scholar] [CrossRef] [PubMed]
- Pinilla, V.; Sáez, L.A. La Despoblación Rural en España: Génesis de un Problema y Políticas Innovadoras. Cent. Estuios Sobre Despoblación y Desarro. Áreas Rural. 2017, p. 24. Available online: https://www.age-geografia.es/site/wp-content/uploads/2017/10/La-despoblaci%C3%B3n-rural-en-Espa%C3%B1a-CEDDAR.pdf (accessed on 14 January 2024).
- ESPON. Fighting Rural Depopulation in Southern Europe; ESPON: Carson, CA, USA, 2018. [Google Scholar]
- Eurostat. Population Projections: Urban Growth, Rural Decline. 2021. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210520-1 (accessed on 17 January 2024).
- Camarero, L.; Oliva, J. Thinking in rural gap: Mobility and social inequalities. Palgrave Commun. 2019, 5, 95. [Google Scholar] [CrossRef]
- Ambrosetti, E. Demographic Challenges in the Mediterranean. IEMed Mediterranean Yearbook, Instituto Europeo del Mediterraneo. 2020. Available online: https://www.iemed.org/publication/demographic-challenges-in-the-mediterranean/?lang=es# (accessed on 17 January 2024).
- Reynaud, C.; Miccoli, S. Depopulation and the aging population: The relationship in Italian municipalities. Sustainability 2018, 10, 1004. [Google Scholar] [CrossRef]
- Majdzinska, A. Depopulation Areas in Europe in the Second Decade of the 21st Century. 2021. Available online: https://www.oeaw.ac.at/vid/events/calendar/conferences/the-causes-and-consequences-of-depopulation (accessed on 22 January 2024).
- Eurostat. Ageing Europe—Statistics on Population Developments. 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Main_Page (accessed on 18 January 2024).
- del Pino, J.A.; Camarero, L. Despoblamiento Rural. Soberanía Aliment. Biodivers. y Cult. 2017, pp. 6–11. Available online: https://www2.uned.es/dpto-sociologia-I/departamento_sociologia/luis_camarero/sabc_27.pdf (accessed on 13 July 2022).
- Rodríguez-Rodríguez, D.; Larrubia, R.; Sinoga, J.D. Are protected areas good for the human species? Effects of protected areas on rural depopulation in Spain. Sci. Total Environ. 2021, 763, 144399. [Google Scholar] [CrossRef] [PubMed]
- Mestres, J.; Llorens, E.; Belo, D. Ageing in Spain and Portugal and Its Impact on Economic Growth: A Regional Approach. 2020, pp. 28–30. Available online: https://www.caixabankresearch.com/en/economics-markets/labour-market-demographics/ageing-spain-and-portugal-and-its-impact-economic (accessed on 8 September 2022).
- Marre, A. Rural Population Loss and Strategies for Recovery. Econ Focus. 2020. First Quarter. pp. 27–30. Available online: https://www.richmondfed.org/-/media/RichmondFedOrg/publications/research/econ_focus/2020/q1/district_digest.pdf (accessed on 22 July 2022).
- Copus, A.; Dax, T.; Kovács, K.; Tagai, G.; Weber, R.; Ortega-Reig, M.; Ferrandis, A.; Piras, S.; Meredith, D. ESCAPE European Shrinking Rural Areas: Challenges, Actions and Perspectives for Territorial Governance. Applied Research. Final Report. 2020. Available online: www.espon.eu (accessed on 22 January 2024).
- Franklin, R.S. I come to bury (population) growth, not to praise it. Spat. Econ. Anal. 2020, 15, 359–373. [Google Scholar] [CrossRef] [PubMed]
- Bruno, D.; Sorando, R.; Álvarez-Farizo, B.; Castellano, C.; Céspedes, V.; Gallardo, B.; Jiménez, J.J.; López, M.V.; López-Flores, R.; Moret-Fernández, D.; et al. Depopulation impacts on ecosystem services in Mediterranean rural areas. Ecosyst. Serv. 2021, 52, 101369. [Google Scholar] [CrossRef]
- Benayas, J.M.R.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of agricultural land: An overview of drivers and consequences. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2, 14. [Google Scholar] [CrossRef]
- European Commission. Poverty and Social Exclusion in Rural Areas; European Commission: Brussels, Belgium, 2008.
- Rodríguez-Soler, R.; Uribe-Toril, J.; De Pablo Valenciano, J. Worldwide trends in the scientific production on rural depopulation, a bibliometric analysis using bibliometrix R-tool. Land Use Policy 2020, 97, 104787. [Google Scholar] [CrossRef]
- Dijkstra, L.; Poelman, H. Remote Rural Regions: How Proximity to a City Influences the Performance of Rural Regions. Reg. Focus 2008, 1, 1–8. [Google Scholar]
- MAPA. Digitisation Strategy Agri-Food ad Forestry Sector and Rural Areas. 2019. Available online: https://www.mapa.gob.es/images/en/digitisationstrategy_tcm38-513192.pdf (accessed on 2 February 2024).
- Morote, R.P.; Rosa, C.P.; Chicharro, M.N.; Merino Madrid, E. Determinant factors of individuals’ decision to emigrate in rural Spain: The role of ICT-based public policies. Technol. Soc. 2021, 67, 101777. [Google Scholar] [CrossRef]
- Muñoz, M.; Sanhueza, R.; Lopez, I.; Perez-Bustamante, L.; Seguel, L. La Participación Social y la Protección del Patrimonio. Urbano 2004, 19, 7. [Google Scholar]
- Gløersen, E.; Drăgulin, M.; Hans, S.; Kaucic, J.; Schuh, B.; Keringer, F.; Celotti, P. The Impact of Demographic Change on European Regions; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar] [CrossRef]
- Barroso, C.E.; Barros, F.C.; Vale, C.P.; Oliveira, D.V.; Ramos, L.F. Vernacular heritage of northwest Portugal: The valley and the mountain range farmhouse. In Proceedings of the Construction Pathology, Rehabilitation Technology and Heritage Management—REHABEND2020, Granada, Spain, 24–27 March 2020; pp. 372–381. [Google Scholar]
- Tieskens, K.F.; Schulp, C.J.E.; Levers, C.; Lieskovský, J.; Kuemmerle, T.; Plieninger, T.; Verburg, P.H. Characterizing European cultural landscapes: Accounting for structure, management intensity and value of agricultural and forest landscapes. Land Use Policy 2017, 62, 29–39. [Google Scholar] [CrossRef]
- Vos, W.; Meekes, H. Trends in European cultural landscape development: Perspectives for a sustainable future. Landsc. Urban Plan 1999, 46, 3–14. [Google Scholar] [CrossRef]
- Salis, M.; Del Giudice, L.; Jahdi, R.; Alcasena-Urdiroz, F.; Scarpa, C.; Pellizzaro, G.; Bacciu, V.; Schirru, M.; Ventura, A.; Casula, M.; et al. Spatial Patterns and Intensity of Land Abandonment Drive Wildfire Hazard and Likelihood in Mediterranean Agropastoral Areas. Land 2022, 11, 1942. [Google Scholar] [CrossRef]
- Mantero, G.; Morresi, D.; Marzano, R.; Motta, R.; Mladenoff, D.J.; Garbarino, M. The influence of land abandonment on forest disturbance regimes: A global review. Landsc. Ecol. 2020, 35, 2723–2744. [Google Scholar] [CrossRef]
- Wisner, B.; Blaikie, P.; Cannon, T.; Davis, I. At Risk; Routledge: London, UK, 2004. [Google Scholar] [CrossRef]
- Cutter, S.L.; Mitchell, J.; Michael, S. Explore Carolina; Blackwell Publishers: Hoboken, NJ, USA, 2000; Volume 90. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Breil, M.; Downing, C.; Kazmierczak, A.; Makinen, K.; Romanovska, L. Social Vulnerability to Climate Change in European Cities—State of Play in Policy and Practice. 2018. Available online: https://www.eionet.europa.eu/etcs/etc-cca/products/etc-cca-reports/tp_1-2018 (accessed on 11 May 2022).
- Flanagan, B.E.; Gregory, E.W.; Hallisey, E.J.; Heitgerd, J.L.; Lewis, B. A Social Vulnerability Index for Disaster Management. J. Homel. Secur. Emerg. Manag. 2011, 8, 0000102202154773551792. [Google Scholar] [CrossRef]
- Tate, E. Social vulnerability indices: A comparative assessment using uncertainty and sensitivity analysis. Nat. Hazards 2012, 63, 325–347. [Google Scholar] [CrossRef]
- Ciurean, R.; Schroter, D.; Glade, T. Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction. In Approaches to Disaster Management—Examining the Implications of Hazards, Emergencies and Disasters; InTech: Houston, TX, USA, 2013; Volume 11, p. 13. [Google Scholar] [CrossRef]
- Frigerio, I.; Ventura, S.; Strigaro, D.; Mattavelli, M.; De Amicis, M.; Mugnano, S.; Boffi, M. A GIS-based approach to identify the spatial variability of social vulnerability to seismic hazard in Italy. Appl. Geogr. 2016, 74, 12–22. [Google Scholar] [CrossRef]
- Oliveira, S.; Félix, F.; Nunes, A.; Lourenço, L.; Laneve, G.; Sebastián López, A. Mapping wildfire vulnerability in Mediterranean Europe. Testing a stepwise approach for operational purposes. J. Environ. Manag. 2018, 206, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Chas-Amil, M.L.; Nogueira-Moure, E.; Prestemon, J.P.; Touza, J. Spatial patterns of social vulnerability in relation to wildfire risk and wildland-urban interface presence. Landsc. Urban Plan 2022, 228, 104577. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graus, S.; Ferreira, T.M.; Vasconcelos, G.; Ortega, J. Changing Conditions: Global Warming-Related Hazards and Vulnerable Rural Populations in Mediterranean Europe. Urban Sci. 2024, 8, 42. https://doi.org/10.3390/urbansci8020042
Graus S, Ferreira TM, Vasconcelos G, Ortega J. Changing Conditions: Global Warming-Related Hazards and Vulnerable Rural Populations in Mediterranean Europe. Urban Science. 2024; 8(2):42. https://doi.org/10.3390/urbansci8020042
Chicago/Turabian StyleGraus, Sandra, Tiago Miguel Ferreira, Graça Vasconcelos, and Javier Ortega. 2024. "Changing Conditions: Global Warming-Related Hazards and Vulnerable Rural Populations in Mediterranean Europe" Urban Science 8, no. 2: 42. https://doi.org/10.3390/urbansci8020042
APA StyleGraus, S., Ferreira, T. M., Vasconcelos, G., & Ortega, J. (2024). Changing Conditions: Global Warming-Related Hazards and Vulnerable Rural Populations in Mediterranean Europe. Urban Science, 8(2), 42. https://doi.org/10.3390/urbansci8020042