Enhancing Urban Resilience: Strategic Management and Action Plans for Cyclonic Events through Socially Constructed Risk Processes
Abstract
:1. Introduction
1.1. Geo-Information
1.2. Crowdsourcing and Risk Management
2. Materials and Methods
2.1. Study Area
2.2. Methodological Design
- The preliminary stage: The bibliographic review and selection of observation focal points and the demographic evaluation of the study area.
- The diagnostic phases of the problem:
- Phase (i): The spatiotemporal evaluation of emergency response mechanisms;
- Phase (ii): The spatiotemporal evaluation of healthcare centers/services;
- Phase (iii): The implementation of crowdsourcing utilizing geo-informatics tools for data collection via geo-referenced web forms.
2.3. Urban Inhabitant Characteristics
- N = the population size;
- e = the margin of error (percentage expressed in decimals);
- z = the z-score;
- p = the proportion of individuals in the population evaluated who possess the characteristic under study. These data are generally unknown, and it is usually assumed that p = q = 0.5, which is the safest option. q, the proportion of individuals who do not have that characteristic, is 1 − p.
2.4. Crowdsourcing Instrument
2.4.1. Mobile Apps for Data Collection
2.4.2. Structured Survey Form
- We propose the development of a survey instrument with fifteen questions, designed to be completed within four minutes. The form should consist of four parts:
- Identification: The collection of demographic information about participants (gender, age group, and level of education);
- Linkage: The exploration of the connection between the respondent and the subject matter;
- Diagnosis: The evaluation of the perceived problem;
- Proposal: The assessment of the feasibility of creating a volunteer corps and providing citizens with training for emergency responses.
2.4.3. Fieldwork Execution
2.4.4. Analysis of Spatiotemporal Data
2.4.5. Bottom-Up Information Gathering
3. Results and Discussion
3.1. Evaluation of Municipal Life-Saving and Rescue Mechanisms
3.2. Evaluation of Emergency Medical Response Mechanisms
3.3. Crowdsourcing in the Study of Strong Wind Risk in Soledad
- Incorporating webcams and sirens to enhance surveillance and early warning systems.
- Providing training programs to educate citizens on emergency preparedness and response strategies.
- Establishing dissemination platforms through social networks to disseminate timely information and instructions during emergencies.
- Assigning specific tasks to citizens as part of community-based response efforts.
- Developing mobile applications that allow residents to report information and incidents in real time [33].
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khajwal, A.B.; Noshadravan, A. An uncertainty-aware framework for reliable disaster damage assessment via crowdsourcing. Int. J. Disaster Risk Reduct. 2021, 55, 102110. [Google Scholar] [CrossRef]
- Tol, R.S.J. The Economic Effects of Climate Change. J. Econ. Perspect. 2009, 23, 29–51. [Google Scholar] [CrossRef]
- Miranda Sara, L.; Jameson, S.; Pfeffer, K.; Baud, I. Risk perception: The social construction of spatial knowledge around climate change-related scenarios in Lima. Habitat Int. 2016, 54, 136–149. [Google Scholar] [CrossRef]
- Chelleri, L.; Schuetze, T.; Salvati, L. Integrating resilience with urban sustainability in neglected neighborhoods: Challenges and opportunities of transitioning to decentralized water management in Mexico City. Habitat Int. 2015, 48, 122–130. [Google Scholar] [CrossRef]
- Seifollahi-Aghmiuni, S.; Kalantari, Z.; Egidi, G.; Gaburova, L.; Salvati, L. Urbanisation-driven land degradation and socioeconomic challenges in peri-urban areas: Insights from Southern Europe. Ambio 2022, 51, 1446–1458. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Wu, H.-Z. Prevention/mitigation of natural disasters in urban areas. Smart Constr. Sustain. Cities 2023, 1, 4. [Google Scholar] [CrossRef]
- Datola, G. Implementing urban resilience in urban planning: A comprehensive framework for urban resilience evaluation. Sustain. Cities Soc. 2023, 98, 104821. [Google Scholar] [CrossRef]
- Sakijege, T.; Dakyaga, F. Going beyond generalization: Perspective on the persistence of urban floods in Dar es Salaam. Nat. Hazards 2023, 115, 1909–1926. [Google Scholar] [CrossRef]
- Nevat, I.; Pignatta, G.; Ruefenacht, L.A.; Acero, J.A. A decision support tool for climate-informed and socioeconomic urban design. Environ. Dev. Sustain. 2021, 23, 7627–7651. [Google Scholar] [CrossRef]
- Santos, L.G.R.; Nevat, I.; Pignatta, G.; Norford, L.K. Climate-informed decision-making for urban design: Assessing the impact of urban morphology on urban heat island. Urban Clim. 2021, 36, 100776. [Google Scholar] [CrossRef]
- Lafortezza, R.; Sanesi, G. Nature-based solutions: Settling the issue of sustainable urbanization. Environ. Res. 2019, 172, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Malekinezhad, H.; Sepehri, M.; Hosseini, S.Z.; Santos, C.A.G.; Rodrigo-Comino, J.; Meshram, S.G. Role and Concept of Rooftop Disconnection in Terms of Runoff Volume and Flood Peak Quantity. Int. J. Environ. Res. 2021, 15, 935–946. [Google Scholar] [CrossRef]
- Morency, C.; Paez, A.; Roorda, M.J.; Mercado, R.; Farber, S. Distance traveled in three Canadian cities: Spatial analysis from the perspective of vulnerable population segments. J. Transp. Geogr. 2011, 19, 39–50. [Google Scholar] [CrossRef]
- Mpanje, D.; Gibbons, P.; McDermott, R. Social capital in vulnerable urban settings: An analytical framework. J. Int. Humanit. Action 2018, 3, 4. [Google Scholar] [CrossRef]
- Bartniczak, B.; Raszkowski, A. Implementation of the Sustainable Cities and Communities Sustainable Development Goal (SDG) in the European Union. Sustainability 2022, 14, 16808. [Google Scholar] [CrossRef]
- Vaidya, H.; Chatterji, T. SDG 11 sustainable cities and communities: SDG 11 and the new urban agenda: Global sustainability frameworks for local action. Actioning Glob. Goals Local Impact Towards Sustain. Sci. Policy Educ. Pract. 2020, 173–185. [Google Scholar] [CrossRef]
- Pérez-Arévalo, R.; Serrano-Montes, J.L.; Jiménez-Caldera, J.E.; Rodrigo-Comino, J.; Smith, P.; Caballero-Calvo, A. Facing climate change and improving emergency responses in Southern America by analyzing urban cyclonic wind events. Urban Clim. 2023, 49, 101489. [Google Scholar] [CrossRef]
- Bouzguenda, I.; Alalouch, C.; Fava, N. Towards smart sustainable cities: A review of the role digital citizen participation could play in advancing social sustainability. Sustain. Cities Soc. 2019, 50, 101627. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M.; Foth, M.; Sabatini-Marques, J.; da Costa, E.; Ioppolo, G. Can cities become smart without being sustainable? A systematic review of the literature. Sustain. Cities Soc. 2019, 45, 348–365. [Google Scholar] [CrossRef]
- Lee, D.W.; Kim, H.Y. The effect of social capital on disaster conflicts in local communities: Focusing on disaster victims. Int. J. Disaster Risk Reduct. 2021, 63, 102445. [Google Scholar] [CrossRef]
- Caragliu, A.; Del Bo, C.F. Smart innovative cities: The impact of Smart City policies on urban innovation. Technol. Forecast. Soc. Chang. 2019, 142, 373–383. [Google Scholar] [CrossRef]
- Jiménez-Caldera, J.; Serrano-Montes, J.L.; Pérez-Arévalo, R.; Rodrigo-Comino, J.; Salvati, L.; Caballero-Calvo, A. A Conceptual Model for Planning and Management of Areas of Public Space and Meeting in Colombia. Land 2022, 11, 1922. [Google Scholar] [CrossRef]
- Bankoff, G. In the Eye of the Storm: The Social Construction of the Forces of Nature and the Climatic and Seismic Construction of God in the Philippines. J. Southeast Asian Stud. 2004, 35, 91–111. [Google Scholar] [CrossRef]
- Tumini, I.; Poletti, A. Natural disaster and informality (re)production in Chile. City Cult. Soc. 2019, 19, 100312. [Google Scholar] [CrossRef]
- Tierney, E.; Hannigan, A.; Kinneen, L.; May, C.; O’Sullivan, M.; King, R.; Kennedy, N.; MacFarlane, A. Interdisciplinary team working in the Irish primary healthcare system: Analysis of ‘invisible’ bottom up innovations using Normalisation Process Theory. Health Policy 2019, 123, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Mathews, A.J.; Haffner, M.; Ellis, E.A. GIS-based modeling of tornado siren sound propagation: Refining spatial extent and coverage estimations. Int. J. Disaster Risk Reduct. 2017, 23, 36–44. [Google Scholar] [CrossRef]
- Strader, S.M.; Ash, K.; Wagner, E.; Sherrod, C. Mobile home resident evacuation vulnerability and emergency medical service access during tornado events in the Southeast United States. Int. J. Disaster Risk Reduct. 2019, 38, 101210. [Google Scholar] [CrossRef]
- Rosales, M.; Ortiz, J.C.; Saavedra, C.O. Tornadoes in Barranquilla and Its Metropolitan Area within the Context Of Climate Change: A Preliminary Study. Rev. Colomb. De Física 2011, 43. Available online: http://www.cdc.noaa.gov/cdc/reanalysis/reanalysis.s (accessed on 12 December 2023).
- Pérez-Arévalo, R.; Caballero-Calvo, A. Human Capital in Latin-American ‘Creative Cities’: The Case of Barranquilla (Colombia). Sociol. Urbana E Rural. 2021, 126, 79–96. [Google Scholar] [CrossRef]
- Levina, E.Y.; Masalimova, A.R.; Kryukova, N.I.; Grebennikov, V.V.; Marchuk, N.N.; Shirev, D.A.; Renglikh, K.A.; Shagieva, R.V. Structure and Content of e-Learning Information Environment Based on Geo-Information Technologies. Eurasia J. Math. Sci. Technol. Educ. 2017, 13, 5019–5031. [Google Scholar] [CrossRef]
- Sluter, C.R.; van Elzakker, C.P.J.M.; Ivánová, I. Requirements Elicitation for Geo-information Solutions. Cartogr. J. 2017, 54, 77–90. [Google Scholar] [CrossRef]
- Georgiadou, Y.; Stoter, J. Studying the use of geo-information in government—A conceptual framework. Comput. Environ. Urban Syst. 2010, 34, 70–78. [Google Scholar] [CrossRef]
- Bastardo, R.; Pavão, J.; Rocha, N.P. Crowdsourcing Technologies to Promote Citizens’ Participation in Smart Cities, a Scoping Review. Procedia Comput. Sci. 2023, 219, 303–311. [Google Scholar] [CrossRef]
- Jiménez-Caldera, J.; Durango-Severiche, G.Y.; Pérez-Arévalo, R.; Serrano-Montes, J.L.; Rodrigo-Comino, J.; Caballero-Calvo, A. Methodological Proposal for The Inclusion of Citizen Participation in the Management and Planning of Urban Public Spaces. Cities 2024, 150, 105008. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Li, N.; Yu, S. Crowdsourcing the perceived urban built environment via social media: The case of underutilized land. Adv. Eng. Inform. 2021, 50, 101371. [Google Scholar] [CrossRef]
- Luokkala, P.; Nikander, J.; Korpi, J.; Virrantaus, K.; Torkki, P. Developing a concept of a context-aware common operational picture. Saf. Sci. 2017, 93, 277–295. [Google Scholar] [CrossRef]
- Yousfi, S.; Chiadmi, D.; Rhanoui, M. Smart big data framework for insight discovery. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 9777–9792. [Google Scholar] [CrossRef]
- Wehn, U.; Rusca, M.; Evers, J.; Lanfranchi, V. Participation in flood risk management and the potential of citizen observatories: A governance analysis. Environ. Sci. Policy 2015, 48, 225–236. [Google Scholar] [CrossRef]
- Li, T.; Xie, N.; Zeng, C.; Zhou, W.; Zheng, L.; Jiang, Y.; Yang, Y.; Ha, H.Y.; Xue, W.; Huang, Y.; et al. Data-Driven Techniques in Disaster Information Management. ACM Comput. Surv. 2017, 50, 1–45. [Google Scholar] [CrossRef]
- Mahajan, S.; Hausladen, C.I.; Argota Sánchez-Vaquerizo, J.; Korecki, M.; Helbing, D. Participatory resilience: Surviving, recovering and improving together. Sustain. Cities Soc. 2022, 83, 103942. [Google Scholar] [CrossRef]
- Peixoto, J.P.J.; Costa, D.G.; Portugal, P.; Vasques, F. A geospatial dataset of urban infrastructure for emergency response in Portugal. Data Brief 2023, 50, 109593. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Morales, A.J.; Suárez, J.A.; Risquez, A.; Villamil-Gómez, W.E.; Paniz-Mondolfi, A. Consequences of Venezuela’s massive migration crisis on imported malaria in Colombia, 2016–2018. Travel Med. Infect. Dis. 2019, 28, 98–99. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, M.; Guillén, J.; Ortíz, J.; Ramírez Correa, J.F.; Page, K.R.; Barriga Talero M, Á.; López, J.J.; Fernández-Niño, J.A.; Núñez, R.L.; Spiegel, P.; et al. Syphilis prevalence and correlates of infection among Venezuelan refugees and migrants in Colombia: Findings of a cross-sectional biobehavioral survey. Lancet Reg. Health-Am. 2024, 30, 100669. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, M.; Guillén, J.R.; Bevilacqua, K.G.; Arciniegas, S.; Ortíz, J.; López, J.J.; Ramírez, J.F.; Talero, M.B.; Quijano, C.; Vela, A.; et al. Qualitative assessment of the impacts of the COVID-19 pandemic on migration, access to healthcare, and social wellbeing among Venezuelan migrants and refugees in Colombia. J. Migr. Health 2023, 7, 100187. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Nino, J.A.; Bojorquez-Chapela, I. Migration of Venezuelans to Colombia. Lancet 2018, 392, 1013–1014. [Google Scholar] [CrossRef] [PubMed]
- Choo, M.; Yoon, D.K. Examining the effects of the local communities’ social capital on disaster response capacity in Seoul, South Korea. Int. J. Disaster Risk Reduct. 2022, 75, 102973. [Google Scholar] [CrossRef]
- Helmrich, A.M.; Ruddell, B.L.; Bessem, K.; Chester, M.V.; Chohan, N.; Doerry, E.; Eppinger, J.; Garcia, M.; Goodall, J.L.; Lowry, C.; et al. Opportunities for crowdsourcing in urban flood monitoring. Environ. Model. Softw. 2021, 143, 105124. [Google Scholar] [CrossRef]
- Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A.; Kamruzzaman, M. Can volunteer crowdsourcing reduce disaster risk? A systematic review of the literature. Int. J. Disaster Risk Reduct. 2019, 35, 101097. [Google Scholar] [CrossRef]
- Brabham, D.C.; Ribisl, K.M.; Kirchner, T.R.; Bernhardt, J.M. Crowdsourcing applications for public health. Am. J. Prev. Med. 2014, 46, 179–187. [Google Scholar] [CrossRef]
- Zander, K.K.; Sibarani, R.; Lassa, J.; Nguyen, D.; Dimmock, A. How do Australians use social media during natural hazards? A survey. Int. J. Disaster Risk Reduct. 2022, 81, 103207. [Google Scholar] [CrossRef]
Neighborhoods | Gales—Tornadoes—Strong Winds | Events | Injuries | Deaths | Homes Affected | ||||
---|---|---|---|---|---|---|---|---|---|
2001–2020 | |||||||||
El Hipódromo | 2005 | 2007 | 2008 | 2012 | 2014 | 5 | 215 | 0 | 815 |
Costa Hermosa | 2007 | 2011 | 2012 | 2016 | 4 | 238 | 1 | 66 | |
El Río | 2005 | 2007 | 2 | 10 | 0 | 146 | |||
Salamanca | 2005 | 2007 | 2 | 80 | 0 | 20 | |||
Santa Inés | 2005 | 2007 | 2 | 60 | 0 | 136 | |||
Total | 15 | 603 | 1 | 1183 |
Neighborhood | Area (ha) | 0–9 | 10–19 | 20–29 | 30–39 | 40–49 | 50–59 | 60–69 | 70–79 | 80–89 | 90–99 | 100 | Population |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Costa Hermosa | 47.22 | 2031 | 2045 | 2336 | 2289 | 1623 | 1492 | 1234 | 514 | 171 | 34 | 2 | 13,771 |
El Hípodromo | 47.64 | 1103 | 1443 | 1307 | 1141 | 1185 | 1127 | 653 | 671 | 257 | 47 | 2 | 8936 |
Salamanca | 9.22 | 1014 | 1172 | 1164 | 1048 | 1084 | 819 | 644 | 459 | 138 | 18 | 1 | 7561 |
Santa Inés | 11.49 | 487 | 603 | 575 | 571 | 577 | 410 | 413 | 249 | 67 | 15 | 0 | 3967 |
El Río | 16.32 | 463 | 625 | 515 | 561 | 554 | 339 | 353 | 233 | 53 | 15 | 0 | 3711 |
Total | 131.89 | 5098 | 5888 | 5897 | 5610 | 5023 | 4187 | 3297 | 2126 | 686 | 129 | 5 | 37,946 |
Complexity | Second Level | Low Complexity | Low Complexity |
---|---|---|---|
Name of health care center | Juan Domínguez Romero Hospital | Low-complexity health centers | Mobile units |
1. Centro de Salud Ciudadela Metropolitana | |||
2. Centro de Salud 13 de Junio | |||
3. Centro de Salud Villa Estadio | |||
4. Centro de Salud Salamanca | |||
5. Centro de Salud Manuela Beltrán | |||
6. Centro de Salud Maclovia Niebles | |||
7. Centro de Salud La Esperanza | |||
8. Centro de Salud Costa Hermosa | |||
9. Centro de Salud el Parque |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Arévalo, R.; Jiménez-Caldera, J.; Serrano-Montes, J.L.; Rodrigo-Comino, J.; Therán-Nieto, K.; Caballero-Calvo, A. Enhancing Urban Resilience: Strategic Management and Action Plans for Cyclonic Events through Socially Constructed Risk Processes. Urban Sci. 2024, 8, 43. https://doi.org/10.3390/urbansci8020043
Pérez-Arévalo R, Jiménez-Caldera J, Serrano-Montes JL, Rodrigo-Comino J, Therán-Nieto K, Caballero-Calvo A. Enhancing Urban Resilience: Strategic Management and Action Plans for Cyclonic Events through Socially Constructed Risk Processes. Urban Science. 2024; 8(2):43. https://doi.org/10.3390/urbansci8020043
Chicago/Turabian StylePérez-Arévalo, Raúl, Juan Jiménez-Caldera, José Luis Serrano-Montes, Jesús Rodrigo-Comino, Kevin Therán-Nieto, and Andrés Caballero-Calvo. 2024. "Enhancing Urban Resilience: Strategic Management and Action Plans for Cyclonic Events through Socially Constructed Risk Processes" Urban Science 8, no. 2: 43. https://doi.org/10.3390/urbansci8020043
APA StylePérez-Arévalo, R., Jiménez-Caldera, J., Serrano-Montes, J. L., Rodrigo-Comino, J., Therán-Nieto, K., & Caballero-Calvo, A. (2024). Enhancing Urban Resilience: Strategic Management and Action Plans for Cyclonic Events through Socially Constructed Risk Processes. Urban Science, 8(2), 43. https://doi.org/10.3390/urbansci8020043