From Block to City Scale: Greenery’s Contribution to Cooling the Urban Environment
Abstract
:1. Introduction
2. Materials and Methods
Systematic Literature Review
3. Results and Discussion
3.1. Bibliometric Trends
3.2. Geographic and Climate Factors
3.3. Block-Scale Research
3.4. Neighborhood-Scale Research
3.5. City Scale Research
4. Conclusions
- Green spaces, notably parks, are crucial in mitigating urban-heat-island effects and enhancing microclimates across block, neighborhood, and city scales;
- The cooling effect of vegetation significantly impacts air and surface temperatures, with variations influenced by spatial distribution and site attributes;
- Maintaining methodological consistency in research is essential for effective urban planning and landscape design, facilitating the optimization of cooling benefits derived from green infrastructure;
- Overall, the research emphasizes the vital role of vegetation in improving urban living standards, promoting sustainability, and enhancing resilience against climate change.
- Predominant site type: public open spaces, particularly parks;
- Most studies focused on grouped vegetation with mixed or aligned distribution;
- Key physical vegetation parameters: tree height and leaf area index (LAI);
- The cooling effect was assessed primarily through air temperature, with an average reduction of 0.7 to 2.7 °C. The cooling effect in parks ranged from 0.81 to 2.68 °C, and in streets from 0.41 to 2.15 °C;
- Surface temperatures in parks ranged from 0.75 to 6.76 °C, and in streets from 3.0 to 6.0 °C.
- Predominant site type: open public spaces, mainly sets of blocks;
- Most studies focused on mixed vegetation with mixed and aligned distribution;
- The presence/absence parameter was primary for the spatial vegetation factor;
- The cooling effect was assessed primarily through air temperature, with reductions ranging from 1.09 to 2.89 °C. The cooling effect in streets ranged from 0.3 to 1 °C and in sets of blocks from 1.0 to 2.7 °C;
- Surface temperatures on streets ranged from 2.0 to 5.0 °C and in sets of blocks from 1.75 to 2.9 °C.
- Predominant site type: open public spaces;
- Most research examined mixed vegetation with mixed distributions;
- Land cover was the key spatial vegetation parameter;
- The cooling effect was assessed primarily through surface temperature, with average reductions between 0.48 and 2.17 °C. The cooling effect in parks ranged from 0.5 to 2.85 °C, and in cities from 1.1 to 2.4 °C;
- Surface temperatures varied from 1.85 to 7.3 °C in parks, 2.55 to 3.14 °C in sets of blocks, and 2.65 to 3.9 °C in the city.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, S.; Guldmann, J.M.; Liu, Z.; Zhao, L.; Wang, J.; Pan, X. Modeling of Shade Creation and Radiation Modification by Four Tree Species in Hot and Humid Areas: Case Study of Guangzhou, China. Urban For. Urban Green. 2020, 47, 126545. [Google Scholar] [CrossRef]
- Saha, M.; Al Kafy, A.; Bakshi, A.; Al Faisal, A.; Almulhim, A.I.; Rahaman, Z.A.; Al Rakib, A.; Fattah, M.A.; Akter, K.S.; Rahman, M.T.; et al. Modelling Microscale Impacts Assessment of Urban Expansion on Seasonal Surface Urban Heat Island Intensity Using Neural Network Algorithms; Elsevier B.V.: Amsterdam, The Netherlands, 2022; Volume 275, ISBN 5136043200512. [Google Scholar]
- Stewart, I.D.; Krayenhoff, E.S.; Voogt, J.A.; Lachapelle, J.A.; Allen, M.A.; Broadbent, A.M. Time Evolution of the Surface Urban Heat Island. Earth’s Futur. 2021, 9, e2021EF002178. [Google Scholar] [CrossRef]
- Akbari, H.; Pomerantz, M.; Taha, H. Cool Surfaces and Shade Trees to Reduce Energy Use and Improve Air Quality in Urban Areas. Sol. Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Noro, M.; Lazzarin, R. Urban Heat Island in Padua, Italy: Simulation Analysis and Mitigation Strategies. Urban Clim. 2015, 14, 187–196. [Google Scholar] [CrossRef]
- Wallemacq, P. Economic Losses, Poverty & Disasters 1998–2017; Centre for Research on the Epidemiology of Disasters CRED: Louvain-la-Neuve, Belgium, 2018. [Google Scholar]
- World Health Organization. Quantitative Risk Assessment of the Effects of Climate Change on Selected Causes of Death, 2030s and 2050s; WHO Press: Geneva, Switzerland, 2014; ISBN 9789241507691. [Google Scholar]
- Al-Gretawee, H.; Rayburg, S.; Neave, M. The Cooling Effect of a Medium Sized Park on an Urban Environment. Int. J. Geomate 2016, 11, 2541–2546. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The Cooling Efficiency of Urban Landscape Strategies in a Hot Dry Climate. Landsc. Urban Plan. 2009, 92, 179–186. [Google Scholar] [CrossRef]
- Wang, Y.; Akbari, H. The Effects of Street Tree Planting on Urban Heat Island Mitigation in Montreal. Sustain. Cities Soc. 2016, 27, 122–128. [Google Scholar] [CrossRef]
- Amani-Beni, M.; Zhang, B.; di Xie, G.; Xu, J. Impact of Urban Park’s Tree, Grass and Waterbody on Microclimate in Hot Summer Days: A Case Study of Olympic Park in Beijing, China. Urban For. Urban Green. 2018, 32, 1–6. [Google Scholar] [CrossRef]
- Chatzinikolaou, E.; Chalkias, C.; Dimopoulou, E. Urban Microclimate Improvement Using ENVI-MET Climate Model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 69–76. [Google Scholar] [CrossRef]
- Santamouris, M.; Ban-Weiss, G.; Osmond, P.; Paolini, R.; Synnefa, A.; Cartalis, C.; Muscio, A.; Zinzi, M.; Morakinyo, T.E.; Ng, E.; et al. Progress in Urban Greenery Mitigation Science—Assessment Methodologies Advanced Technologies and Impact on Cities. J. Civ. Eng. Manag. 2018, 24, 638–671. [Google Scholar] [CrossRef]
- Shahidan, M. Potential of Individual and Cluster Tree Cooling Effect Performances through Tree Canopy Density Model Evaluation in Improving Urban Microclimate. Curr. World Environ. 2015, 10, 398–413. [Google Scholar] [CrossRef]
- Souch, C.A.; Souch, C. The Effect of Trees on Summertime below Canopy Urban Climates: A Case Study Bloomington, Indiana. J. Arboric. 1993, 19, 303–312. [Google Scholar] [CrossRef]
- Rashid, Z.A.; Al Junid, S.A.M.; Thani, S.K.S.O. Trees’ Cooling Effect on Surrounding Air Temperature Monitoring System: Implementation and Observation. Int. J. Simul. Syst. Sci. Technol. 2014, 15, 70–77. [Google Scholar] [CrossRef]
- Bencheikh, H.; Rchid, A. The Effects of Green Spaces (Palme Trees) on the Microclimate in Arides Zones, Case Study: Ghardaia, Algeria. Energy Procedia 2012, 18, 10–20. [Google Scholar] [CrossRef]
- Xie, Q.; Wu, Y.; Zhou, Z.; Wang, Z. Remote Sensing Study of the Impact of Vegetation on Thermal Environment in Different Contexts. IOP Conf. Ser. Earth Environ. Sci. 2018, 121, 022009. [Google Scholar] [CrossRef]
- Bartesaghi-Koc, C.; Osmond, P.; Peters, A. Quantifying the Seasonal Cooling Capacity of ‘Green Infrastructure Types’ (GITs): An Approach to Assess and Mitigate Surface Urban Heat Island in Sydney, Australia. Landsc. Urban Plan. 2020, 203, 103893. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Ouyang, W.; Lau, K.K.L.; Ren, C.; Ng, E. Right Tree, Right Place (Urban Canyon): Tree Species Selection Approach for Optimum Urban Heat Mitigation—Development and Evaluation. Sci. Total Environ. 2020, 719, 137461. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.H.; Tan, C.L.; Kolokotsa, D.D.; Takebayashi, H. Greenery as a Mitigation and Adaptation Strategy to Urban Heat. Nat. Rev. Earth Environ. 2021, 2, 166–181. [Google Scholar] [CrossRef]
- Chen, J.; Jin, S.; Du, P. Roles of Horizontal and Vertical Tree Canopy Structure in Mitigating Daytime and Nighttime Urban Heat Island Effects. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102060. [Google Scholar] [CrossRef]
- Konarska, J.; Holmer, B.; Lindberg, F.; Thorsson, S. Influence of Vegetation and Building Geometry on the Spatial Variations of Air Temperature and Cooling Rates in a High-Latitude City. Int. J. Climatol. 2016, 36, 2379–2395. [Google Scholar] [CrossRef]
- Chang, C.R.; Li, M.H. Effects of Urban Parks on the Local Urban Thermal Environment. Urban For. Urban Green. 2014, 13, 672–681. [Google Scholar] [CrossRef]
- Jung, A.; Kardeván, P.; Tokei, L. Detection of Urban Effect on Vegetation in a Less Built-up Hungarian City by Hyperspectral Remote Sensing. Phys. Chem. Earth 2005, 30, 255–259. [Google Scholar] [CrossRef]
- Duncan, J.M.A.; Boruff, B.; Saunders, A.; Sun, Q.; Hurley, J.; Amati, M. Turning down the Heat: An Enhanced Understanding of the Relationship between Urban Vegetation and Surface Temperature at the City Scale. Sci. Total Environ. 2019, 656, 118–128. [Google Scholar] [CrossRef] [PubMed]
- LaGro, J. Land-Use Classification. In Encyclopedia of Soils in the Environment; Elsevier Ltd.: New York, NY, USA, 2005; pp. 321–327. ISBN 978-0-12-348530-4. [Google Scholar]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Stavrakakis, G.M.; Al Katsaprakakis, D.; Damasiotis, M. Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations. Energies 2021, 14, 6707. [Google Scholar] [CrossRef]
- Bruse, D.; Bruse, M. Decoding Urban Nature Envi-Met. Available online: https://www.envi-met.com/wp-content/uploads/2021/08/ENVI-met-brochure.pdf (accessed on 10 May 2022).
- Rui, L.; Buccolieri, R.; Gao, Z.; Gatto, E.; Ding, W. Study of the Effect of Green Quantity and Structure on Thermal Comfort and Air Quality in an Urban-like Residential District by ENVI-Met Modelling. Build. Simul. 2019, 12, 183–194. [Google Scholar] [CrossRef]
- Cadenasso, M.L.; Pickett, S.T.A.; Schwarz, K. Spatial Heterogeneity in Urban Ecosystems: Reconceptualizing Land Cover and a Framework for Classification. Front. Ecol. Environ. 2007, 5, 80–88. [Google Scholar] [CrossRef]
- Schuurman, N. Spatial Ontologies. Int. Encycl. Hum. Geogr. 2009, 377–383. [Google Scholar]
- Labib, S.M.; Lindley, S.; Huck, J.J. Spatial Dimensions of the Influence of Urban Green-Blue Spaces on Human Health: A Systematic Review. Environ. Res. 2020, 180, 108869. [Google Scholar] [CrossRef] [PubMed]
- Bartesaghi Koc, C.; Osmond, P.; Peters, A. Towards a Comprehensive Green Infrastructure Typology: A Systematic Review of Approaches, Methods and Typologies. Urban Ecosyst. 2017, 20, 15–35. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-1-107-42953-6. [Google Scholar]
- Lynch, K. The Image of the City; MIT Press: Cambridge, MA, USA, 1960; Volume 11, ISBN 0262120046. [Google Scholar]
- Bazant, S.J. Expansión Urbana Incontrolada y Paradigmas de La Planeación Urbana. Espac. Abierto 2010, 19, 475–503. [Google Scholar]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban Greening to Cool Towns and Cities: A Systematic Review of the Empirical Evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Block, A.H.; Livesley, S.J.; Williams, N.S.G. Responding to the Urban Heat Island: A Review of the Potential of Green Infrastructure; Victoria Centre for Climate Change Adaptation Research: Melbourne, Australia, 2012; ISBN 978-0-7340-4813-4. [Google Scholar]
- Roy, S.; Byrne, J.; Pickering, C. A Systematic Quantitative Review of Urban Tree Benefits, Costs, and Assessment Methods across Cities in Different Climatic Zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef]
- Zupancic, T.; Westmacott, C.; Bulthuis, M. The Impact of Green Space on Heat and Air Pollution in Urban Communities: A Meta-Narrative Systematic Review; David Suzuki Foundation: Vancouver, BC, Canada, 2015. [Google Scholar]
- Bartesaghi Koc, C.; Osmond, P.; Peters, A. Evaluating the Cooling Effects of Green Infrastructure: A Systematic Review of Methods, Indicators and Data Sources. Sol. Energy 2018, 166, 486–508. [Google Scholar] [CrossRef]
- Pickering, C.; Byrne, J. The Benefits of Publishing Systematic Quantitative Literature Reviews for PhD Candidates and Other Early-Career Researchers. High. Educ. Res. Dev. 2014, 33, 534–548. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Citation-Based Clustering of Publications Using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar] [CrossRef]
- Abdi, B.; Hami, A.; Zarehaghi, D. Impact of Small-Scale Tree Planting Patterns on Outdoor Cooling and Thermal Comfort. Sustain. Cities Soc. 2020, 56, 102085. [Google Scholar] [CrossRef]
- Colter, K.R.; Middel, A.C.; Martin, C.A. Effects of Natural and Artificial Shade on Human Thermal Comfort in Residential Neighborhood Parks of Phoenix, Arizona, USA. Urban For. Urban Green. 2019, 44, 126429. [Google Scholar] [CrossRef]
- Han, S.; Song, D.; Xu, L.; Ye, Y.; Yan, S.; Shi, F.; Zhang, Y.; Liu, X.; Du, H. Behaviour in Public Open Spaces: A Systematic Review of Studies with Quantitative Research Methods. Build. Environ. 2022, 223, 109444. [Google Scholar] [CrossRef]
- Motomura, M.; Koohsari, M.J.; Lin, C.Y.; Ishii, K.; Shibata, A.; Nakaya, T.; Kaczynski, A.T.; Veitch, J.; Oka, K. Associations of Public Open Space Attributes with Active and Sedentary Behaviors in Dense Urban Areas: A Systematic Review of Observational Studies. Health Place 2022, 75, 102816. [Google Scholar] [CrossRef]
- Asikin, D.; Nugroho, A.M.; Hasyim, A.W. An Evaluation Building Passive Cooling Achieved through Modification of Herbal Garden Configuration. In Proceedings of the 1st ICETIA 2014, Surakarta, Indonesia, 4 December 2014; pp. 9–13. [Google Scholar]
- Tsiros, I.X.; Hoffman, M.E. Thermal and Comfort Conditions in a Semi-Closed Rear Wooded Garden and Its Adjacent Semi-Open Spaces in a Mediterranean Climate (Athens) during Summer. Archit. Sci. Rev. 2014, 57, 63–82. [Google Scholar] [CrossRef]
- Akbari, H.; Taha, H. The Impact of Trees and White Surfaces on Residential Heating and Cooling Energy Use in Four Canadian Cities. Energy 1992, 17, 141–149. [Google Scholar] [CrossRef]
- Carver, A.D.; Unger, D.R.; Parks, C.L. Modeling Energy Savings from Urban Shade Trees: An Assessment of the CITYgreen® Energy Conservation Module. Environ. Manag. 2004, 34, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Donovan, G.H.; Butry, D.T. The Value of Shade: Estimating the Effect of Urban Trees on Summertime Electricity Use. Energy Build. 2009, 41, 662–668. [Google Scholar] [CrossRef]
- Gómez-Muñoz, V.M.; Porta-Gándara, M.A.; Fernández, J.L. Effect of Tree Shades in Urban Planning in Hot-Arid Climatic Regions. Landsc. Urban Plan. 2010, 94, 149–157. [Google Scholar] [CrossRef]
- Huang, K.T.; Li, Y.J. Impact of Street Canyon Typology on Building’s Peak Cooling Energy Demand: A Parametric Analysis Using Orthogonal Experiment. Energy Build. 2017, 154, 448–464. [Google Scholar] [CrossRef]
- Kong, F.; Yan, W.; Zheng, G.; Yin, H.; Cavan, G.; Zhan, W.; Zhang, N.; Cheng, L. Retrieval of Three-Dimensional Tree Canopy and Shade Using Terrestrial Laser Scanning (TLS) Data to Analyze the Cooling Effect of Vegetation. Agric. For. Meteorol. 2016, 217, 22–34. [Google Scholar] [CrossRef]
- Taha, H.; Akbari, H.; Rosenfeld, A. Heat Island and Oasis Effects of Vegetative Canopies: Micro-Meteorological Field-Measurements. Theor. Appl. Climatol. 1991, 44, 123–138. [Google Scholar] [CrossRef]
- Onishi, A.; Cao, X.; Ito, T.; Shi, F.; Imura, H. Evaluating the Potential for Urban Heat-Island Mitigation by Greening Parking Lots. Urban For. Urban Green. 2010, 9, 323–332. [Google Scholar] [CrossRef]
- Scott, K.I.; Simpson, J.R.; McPherson, E.G. Effetcs of Tree Cover on Parking Lot Microclimate and Vehicle Emissions. J. Arboric. 1999, 25, 129–142. [Google Scholar]
- El-Bardisy, W.M.; Fahmy, M.; El-Gohary, G.F. Climatic Sensitive Landscape Design: Towards a Better Microclimate through Plantation in Public Schools, Cairo, Egypt. Procedia Soc. Behav. Sci. 2016, 216, 206–216. [Google Scholar] [CrossRef]
- Lechner, N. Sustainable Cities Are Solar-Responsive Cities. In Low Carbon Cities: Transforming Urban Systems; Lehmann, S., Ed.; Routledge: London, UK, 2014; p. 484. ISBN 978-0415729833. [Google Scholar]
- Li, Y.; Song, Y. Optimization of Vegetation Arrangement to Improve Microclimate and Thermal Comfort in an Urban Park. Int. Rev. Spat. Plan. Sustain. Dev. 2019, 7, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Zhang, Y.; Yang, Y.; Ye, G. Examining the Impact of Greenspace Patterns on Land Surface Temperature by Coupling LiDAR Data with a CFD Model. Sustainability 2014, 6, 6799–6814. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, L. Optimizing the Spatial Arrangement of Trees in Residential Neighborhoods for Better Cooling Effects: Integrating Modeling with in-Situ Measurements. Landsc. Urban Plan. 2017, 167, 463–472. [Google Scholar] [CrossRef]
- Yu, Z.W.; Guo, Q.H.; Sun, R.H. Impacts of Urban Cooling Effect Based on Landscape Scale: A Review. Chin. J. Appl. Ecol. 2015, 26, 636–642. [Google Scholar]
- Zhang, L.; Zhan, Q.; Lan, Y. Effects of the Tree Distribution and Species on Outdoor Environment Conditions in a Hot Summer and Cold Winter Zone: A Case Study in Wuhan Residential Quarters. Build. Environ. 2018, 130, 27–39. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does Spatial Configuration Matter? Understanding the Effects of Land Cover Pattern on Land Surface Temperature in Urban Landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Zhang, J.; Gou, Z.; Zhang, F.; Yu, R. The Tree Cooling Pond Effect and Its Influential Factors: A Pilot Study in Gold Coast, Australia. Nat.-Based Solut. 2023, 3, 100058. [Google Scholar] [CrossRef]
- Krayenhoff, E.S.; Jiang, T.; Christen, A.; Martilli, A.; Oke, T.R.; Bailey, B.N.; Nazarian, N.; Voogt, J.A.; Giometto, M.G.; Stastny, A.; et al. A Multi-Layer Urban Canopy Meteorological Model with Trees (BEP-Tree): Street Tree Impacts on Pedestrian-Level Climate. Urban Clim. 2020, 32, 100590. [Google Scholar] [CrossRef]
- Bréda, N.J.J. Leaf Area Index. Encycl. Ecol. 2008, 3, 2148–2154. [Google Scholar] [CrossRef]
- Zhang, J.; Gou, Z.; Cheng, B.; Khoshbakht, M. A Study of Physical Factors Influencing Park Cooling Intensities and Their Effects in Different Time of the Day. J. Therm. Biol. 2022, 109, 103336. [Google Scholar] [CrossRef]
- Gachkar, D.; Taghvaei, S.H.; Norouzian-Maleki, S. Outdoor Thermal Comfort Enhancement Using Various Vegetation Species and Materials (Case Study: Delgosha Garden, Iran). Sustain. Cities Soc. 2021, 75, 103309. [Google Scholar] [CrossRef]
- Ouyang, W.; Morakinyo, T.E.; Lee, Y.; Tan, Z.; Ren, C.; Ng, E. How to Quantify the Cooling Effects of Green Infrastructure Strategies from a Spatio-Temporal Perspective: Experience from a Parametric Study. Landsc. Urban Plan. 2023, 237, 104808. [Google Scholar] [CrossRef]
- Lee, H.; Lim, H.; Park, S. Quantitative Assessment of Green Coverage Changes under the Human-Biometeorological Perspective: A Simulation Case Study in Jeju, Republic of Korea. Sustain. Cities Soc. 2023, 97, 104734. [Google Scholar] [CrossRef]
- Balany, F.; Ng, A.W.M.; Muttil, N.; Muthukumaran, S.; Wong, M.S. Green Infrastructure as an Urban Heat Island Mitigation Strategy—A Review. Water 2020, 12, 3577. [Google Scholar] [CrossRef]
- Oke, T.R. Street Design and Urban Canopy Layer Climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Saaroni, H.; Amorim, J.H.; Hiemstra, J.A.; Pearlmutter, D. Urban Green Infrastructure as a Tool for Urban Heat Mitigation: Survey of Research Methodologies and Findings across Different Climatic Regions. Urban Clim. 2018, 24, 94–110. [Google Scholar] [CrossRef]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A Review of Mitigating Strategies to Improve the Thermal Environment and Thermal Comfort in Urban Outdoor Spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Hoffman, M.E. Vegetation as a Climatic Component in the Design of an Urban Street. Energy Build. 2000, 31, 221–235. [Google Scholar] [CrossRef]
- Saito, K.; Said, I.; Shinozaki, M. Evidence-Based Neighborhood Greening and Concomitant Improvement of Urban Heat Environment in the Context of a World Heritage Site—Malacca, Malaysia. Comput. Environ. Urban Syst. 2017, 64, 356–372. [Google Scholar] [CrossRef]
- Alchapar, N.L.; Pezzuto, C.C.; Correa, E.N. Parámetros Urbanos Morfo-Materiales y Su Correlación Con Las Temperaturas de Aire En Verano. Ambient. Construído 2018, 18, 199–213. [Google Scholar] [CrossRef]
- Emmanuel, R.; Loconsole, A. Green Infrastructure as an Adaptation Approach to Tackling Urban Overheating in the Glasgow Clyde Valley Region, UK. Landsc. Urban Plan. 2015, 138, 71–86. [Google Scholar] [CrossRef]
- Das, M.; Das, A.; Momin, S. Quantifying the Cooling Effect of Urban Green Space: A Case from Urban Parks in a Tropical Mega Metropolitan Area (India). Sustain. Cities Soc. 2022, 87, 104062. [Google Scholar] [CrossRef]
- Kowe, P.; Dube, T.; Mushore, T.D.; Ncube, A.; Nyenda, T.; Mutowo, G.; Chinembiri, T.S.; Traore, M.; Kizilirmak, G. Impacts of the Spatial Configuration of Built-up Areas and Urban Vegetation on Land Surface Temperature Using Spectral and Local Spatial Autocorrelation Indices. Remote Sens. Lett. 2022, 13, 1222–1235. [Google Scholar] [CrossRef]
- Žuvela-Aloise, M.; Koch, R.; Buchholz, S.; Früh, B. Modelling the Potential of Green and Blue Infrastructure to Reduce Urban Heat Load in the City of Vienna. Clim. Chang. 2016, 135, 425–438. [Google Scholar] [CrossRef]
- Brown, R.D.; Vanos, J.; Kenny, N.; Lenzholzer, S. Designing Urban Parks That Ameliorate the Effects of Climate Change. Landsc. Urban Plan. 2015, 138, 118–131. [Google Scholar] [CrossRef]
- Li, C.; Lu, L.; Fu, Z.; Sun, R.; Pan, L.; Han, L.; Guo, H.; Li, Q. Diverse Cooling Effects of Green Space on Urban Heat Island in Tropical Megacities. Front. Environ. Sci. 2022, 10. [Google Scholar] [CrossRef]
- Cohen, P.; Potchter, O.; Matzarakis, A. Daily and Seasonal Climatic Conditions of Green Urban Open Spaces in the Mediterranean Climate and Their Impact on Human Comfort. Build. Environ. 2012, 51, 285–295. [Google Scholar] [CrossRef]
- Hamada, S.; Ohta, T. Seasonal Variations in the Cooling Effect of Urban Green Areas on Surrounding Urban Areas. Urban For. Urban Green. 2010, 9, 15–24. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, Y.; Pan, H. Cooling and Humidifying Effect of Plant Communities in Subtropical Urban Parks. Urban For. Urban Green. 2013, 12, 323–329. [Google Scholar] [CrossRef]
- Herath, H.M.P.I.K.; Halwatura, R.U.; Jayasinghe, G.Y. Evaluation of Green Infrastructure Effects on Tropical Sri Lankan Urban Context as an Urban Heat Island Adaptation Strategy. Urban For. Urban Green. 2018, 29, 212–222. [Google Scholar] [CrossRef]
- Vailshery, L.S.; Jaganmohan, M.; Nagendra, H. Effect of Street Trees on Microclimate and Air Pollution in a Tropical City. Urban For. Urban Green. 2013, 12, 408–415. [Google Scholar] [CrossRef]
- Salas Esparza, M.G.; Herrera Sosa, L.C. La Vegetación Como Sistema de Control Para Las Islas de Calor Urbano En Ciudad Juárez, Chihuahua. Rev. Hábitat Sustentable 2017, 7, 14–23. [Google Scholar] [CrossRef]
- Stocco, S.; Correa, E. Alternativas de Diseno Para Mejorar El Desempeno Ambiental de Plazas Urbanas En Mendoza (Argentina). Evaluacion Mediante Simulacion Con ENVI-Met 3.1. Inf. Construcción 2018, 70, e253. [Google Scholar]
- de Abreu-Harbich, L.V.; Labaki, L.C.; Matzarakis, A. Effect of Tree Planting Design and Tree Species on Human Thermal Comfort in the Tropics. Landsc. Urban Plan. 2015, 138, 99–109. [Google Scholar] [CrossRef]
- Rana, G.; Ferrara, R.M. Air Cooling by Tree Transpiration: A Case Study of Olea Europaea, Citrus Sinensis and Pinus Pinea in Mediterranean Town. Urban Clim. 2019, 29, 100507. [Google Scholar] [CrossRef]
- Chen, T.; Yang, H.; Chen, G.; Lam, C.K.C.; Hang, J.; Wang, X.; Liu, Y.; Ling, H. Integrated Impacts of Tree Planting and Aspect Ratios on Thermal Environment in Street Canyons by Scaled Outdoor Experiments. Sci. Total Environ. 2021, 764, 142920. [Google Scholar] [CrossRef]
- Fu, J.; Wang, Y.; Zhou, D.; Cao, S.-J. Impact of Urban Park Design on Microclimate in Cold Regions Using Newly Developped Prediction Method. Sustain. Cities Soc. 2022, 80, 103781. [Google Scholar] [CrossRef]
- Wang, H.; Cai, Y.; Deng, W.; Li, C.; Dong, Y.; Zhou, L.; Sun, J.; Li, C.; Song, B.; Zhang, F.; et al. The Effects of Tree Canopy Structure and Tree Coverage Ratios on Urban Air Temperature Based on ENVI-Met. Forests 2023, 14, 80. [Google Scholar] [CrossRef]
- Coutts, A.M.; White, E.C.; Tapper, N.J.; Beringer, J.; Livesley, S.J. Temperature and Human Thermal Comfort Effects of Street Trees across Three Contrasting Street Canyon Environments. Theor. Appl. Climatol. 2016, 124, 55–68. [Google Scholar] [CrossRef]
- Gromke, C.; Blocken, B.; Janssen, W.; Merema, B.; van Hooff, T.; Timmermans, H. CFD Analysis of Transpirational Cooling by Vegetation: Case Study for Specific Meteorological Conditions during a Heat Wave in Arnhem, Netherlands. Build. Environ. 2015, 83, 11–26. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Within Canopy Temperature Differences and Cooling Ability of Tilia Cordata Trees Grown in Urban Conditions. Build. Environ. 2017, 114, 118–128. [Google Scholar] [CrossRef]
- Bochenek, A.D.; Klemm, K. Effectiveness of Tree Pattern in Street Canyons on Thermal Conditions and Human Comfort. Assessment of an Urban Renewal Project in Historical District in Lodz (Poland). Atmosphere 2021, 12, 751. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Potchter, O.; Bitan, A.; Boltansky, D.; Yaakov, Y. Microclimate Modelling of Street Tree Species Effects within the Varied Urban Morphology in the Mediterranean City of Tel Aviv, Israel. Int. J. Climatol. 2010, 30, 44–57. [Google Scholar] [CrossRef]
- Cheung, P.K.; Jim, C.Y. Differential Cooling Effects of Landscape Parameters in Humid-Subtropical Urban Parks. Landsc. Urban Plan. 2019, 192, 103651. [Google Scholar] [CrossRef]
- Gillner, S.; Vogt, J.; Tharang, A.; Dettmann, S.; Roloff, A. Role of Street Trees in Mitigating Effects of Heat and Drought at Highly Sealed Urban Sites. Landsc. Urban Plan. 2015, 143, 33–42. [Google Scholar] [CrossRef]
- Irmak, M.A.; Yilmaz, S.; Mutlu, E.; Yilmaz, H. Assessment of the Effects of Different Tree Species on Urban Microclimate. Environ. Sci. Pollut. Res. 2018, 25, 15802–15822. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, S.; Li, K.; Zhang, Y.; Kong, L.; Xie, Y.; Dong, L. Large Urban Parks Summertime Cool and Wet Island Intensity and Its Influencing Factors in Beijing, China. Urban For. Urban Green. 2021, 65, 127375. [Google Scholar] [CrossRef]
- Yan, H.; Wang, X.; Hao, P.; Dong, L. Study on the Microclimatic Characteristics and Human Comfort of Park Plant Communities in Summer. Procedia Environ. Sci. 2012, 13, 755–765. [Google Scholar] [CrossRef]
- Srivanit, M.; Hokao, K. Simulation of Cooling Effectiveness of Trees to Improve Outdoor Thermal Environment on Different Climate-Sensitive Urban Forms during A Summer of Bangkok. BUILT 2019, 13, 19–28. [Google Scholar]
- Colunga, M.L.; Cambrón-Sandoval, V.H.; Suzán-Azpiri, H.; Guevara-Escobar, A.; Luna-Soria, H. The Role of Urban Vegetation in Temperature and Heat Island Effects in Querétaro City, Mexico. Atmósfera 2015, 28, 205–218. [Google Scholar] [CrossRef]
- Alchapar, N.L.; Pezzuto, C.C.; Correa, E.N.; Chebel Labaki, L. The Impact of Different Cooling Strategies on Urban Air Temperatures: The Cases of Campinas, Brazil and Mendoza, Argentina. Theor. Appl. Climatol. 2017, 130, 35–50. [Google Scholar] [CrossRef]
- Duarte, D.H.S.; Shinzato, P.; Gusson, C. dos S.; Alves, C.A. The Impact of Vegetation on Urban Microclimate to Counterbalance Built Density in a Subtropical Changing Climate. Urban Clim. 2015, 14, 224–239. [Google Scholar] [CrossRef]
- Ellis, K.N.; Hathaway, J.M.; Reyes Mason, L.; Howe, D.A.; Epps, T.H.; Brown, V.M. Summer Temperature Variability across Four Urban Neighborhoods in Knoxville, Tennessee, USA. Theor. Appl. Climatol. 2015, 127, 701–710. [Google Scholar] [CrossRef]
- Vaz Monteiro, M.; Doick, K.J.; Handley, P.; Peace, A. The Impact of Greenspace Size on the Extent of Local Nocturnal Air Temperature Cooling in London. Urban For. Urban Green. 2016, 16, 160–169. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H.; Chen, L. Contribution of Trees and Grasslands to the Mitigation of Human Heat Stress in a Residential District of Freiburg, Southwest Germany. Landsc. Urban Plan. 2016, 148, 37–50. [Google Scholar] [CrossRef]
- Peron, F.; De Maria, M.M.; Spinazzè, F.; Mazzali, U. An Analysis of the Urban Heat Island of Venice Mainland. Sustain. Cities Soc. 2015, 19, 300–309. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H.; Vaz, T. The Cooling Effect of Green Spaces as a Contribution to the Mitigation of Urban Heat: A Case Study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- Skoulika, F.; Santamouris, M.; Kolokotsa, D.; Boemi, N. On the Thermal Characteristics and the Mitigation Potential of a Medium Size Urban Park in Athens, Greece. Landsc. Urban Plan. 2014, 123, 73–86. [Google Scholar] [CrossRef]
- Sodoudi, S.; Shahmohamadi, P.; Vollack, K.; Cubasch, U.; Che-Ani, A.I. Mitigating the Urban Heat Island Effect in Megacity Tehran. Adv. Meteorol. 2014, 2014, 547974. [Google Scholar] [CrossRef]
- Makido, Y.; Hellman, D.; Shandas, V. Nature-Based Designs to Mitigate Urban Heat: The Efficacy of Green Infrastructure Treatments in Portland, Oregon. Atmosphere 2019, 10, 282. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A Study on the Cooling Effects of Greening in a High-Density City: An Experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Tan, Z.; Lau, K.K.L.; Ng, E. Urban Tree Design Approaches for Mitigating Daytime Urban Heat Island Effects in a High-Density Urban Environment. Energy Build. 2016, 114, 265–274. [Google Scholar] [CrossRef]
- Lin, W.; Yu, T.; Chang, X.; Wu, W.; Zhang, Y. Calculating Cooling Extents of Green Parks Using Remote Sensing: Method and Test. Landsc. Urban Plan. 2015, 134, 66–75. [Google Scholar] [CrossRef]
- Yan, H.; Fan, S.; Guo, C.; Wu, F.; Zhang, N.; Dong, L. Assessing the Effects of Landscape Design Parameters on Intra-Urban Air Temperature Variability: The Case of Beijing, China. Build. Environ. 2014, 76, 44–53. [Google Scholar] [CrossRef]
- Trihamdani, A.R.; Lee, H.S.; Kubota, T.; Phuong, T.T.T. Configuration of Green Spaces for Urban Heat Island Mitigation and Future Building Energy Conservation in Hanoi Master Plan 2030. Buildings 2015, 5, 933–947. [Google Scholar] [CrossRef]
- Jaganmohan, M.; Knapp, S.; Buchmann, C.M.; Schwarz, N. The Bigger, the Better? The Influence of Urban Green Space Design on Cooling Effects for Residential Areas. J. Environ. Qual. 2016, 45, 134–145. [Google Scholar] [CrossRef]
- Leuzinger, S.; Vogt, R.; Körner, C. Tree Surface Temperature in an Urban Environment. Agric. For. Meteorol. 2010, 150, 56–62. [Google Scholar] [CrossRef]
Scale | Elements |
---|---|
Block | Land lots and public urban space |
Neighborhood | Set of urban blocks |
City | Cities and metropolitan areas |
Urban Scale | Köppen–Geiger’s Climate | Publications (%) | Country |
---|---|---|---|
Block | Cfa | 31 (26.5%) | China (Nanjing, Shanghai, and Guangzhou), Japan (Osaka, Ishikawa, Nagoya, and Saitama), and Italy (Rome, Bari, and Bolzano) |
Cfb | 21 (17.9%) | Germany (Mainz, Berlin, and Munich), Netherlands (Arnhem, Utrecht, and Assen), UK (Manchester) | |
Csa | 16 (13.7%) | Greece (Athens), Iran (Tehran and Urmia), Israel (Tel Aviv), and Italy (Rome) | |
Af | 7 (6%) | Malaysia (Putrajaya and Shah Alam) and Singapore (Singapore) | |
BWh | 6 (5.1%) | USA (Phoenix and Tempe), and Egypt (Cairo and El-Sherouk) | |
Neighborhood | Cfa | 18 (26.9%) | China (Shanghai, Guangzhou, and Nanjing), Japan (Nagoya and Saga), and Brazil (São Paulo, Campinas) |
Cfb | 13 (19.4%) | UK (London and Glasgow), Germany (Berlin, Oberhausen, and Freiburg), and Italy (Milan) | |
Cwa | 8 (11.9%) | China (Hong Kong and Tsuen Wan) | |
Csa | 7 (10.4%) | Greece (Athens and Chania), and Iran (Tehran) | |
City | Cfa | 22 (33.3%) | China (Nanjing, Shanghai, and Shenzhen), USA (Baltimore, Atlanta, Tampa), and Australia (Sydney and Gold Coast) |
Cfb | 15 (22.7%) | UK (Edinburgh, London, and Wrexham), Denmark (Copenhagen, Aarhus, and Odense), and Germany (Munich and Leipzig) | |
Af | 9 (13.6%) | Singapore (Singapore), Malaysia (Kuala Lumpur), and Indonesia (Jakarta) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Licón-Portillo, J.A.; Martínez-Torres, K.E.; Chung-Alonso, P.; Herrera Peraza, E.F. From Block to City Scale: Greenery’s Contribution to Cooling the Urban Environment. Urban Sci. 2024, 8, 41. https://doi.org/10.3390/urbansci8020041
Licón-Portillo JA, Martínez-Torres KE, Chung-Alonso P, Herrera Peraza EF. From Block to City Scale: Greenery’s Contribution to Cooling the Urban Environment. Urban Science. 2024; 8(2):41. https://doi.org/10.3390/urbansci8020041
Chicago/Turabian StyleLicón-Portillo, Jesús Abelardo, Karen Estrella Martínez-Torres, Peter Chung-Alonso, and Eduardo Florencio Herrera Peraza. 2024. "From Block to City Scale: Greenery’s Contribution to Cooling the Urban Environment" Urban Science 8, no. 2: 41. https://doi.org/10.3390/urbansci8020041
APA StyleLicón-Portillo, J. A., Martínez-Torres, K. E., Chung-Alonso, P., & Herrera Peraza, E. F. (2024). From Block to City Scale: Greenery’s Contribution to Cooling the Urban Environment. Urban Science, 8(2), 41. https://doi.org/10.3390/urbansci8020041