Investigation on Bearing Characteristics for Critical Fittings of Transmission Lines Undergoing Coupled Ice–Wind Loads
Abstract
1. Introduction
1.1. Background
1.2. Literature Review
1.3. Contribution and Organization of This Paper
2. FEM-Based Model for Fitting Damage Analysis
2.1. FEM Model Construction
2.2. Validation of the Modeling Approach
3. Bearing Characteristics of Jumper Spacers
4. Risk Assessment Model for Hardware Load-Bearing Capacity
4.1. Data Acquisition
4.2. Model Construction Based on MLF-DNN
4.3. Evaluation of the Risk Assessment Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| UHV | ultra-high-voltage |
| UHVDC | ultra-high-voltage direct current |
| MLF-DNN | multi-layer feedforward deep neural network |
| FEM | finite element model |
| LHS | Latin Hypercube Sampling |
References
- Papailiou, K.O. Overhead Lines; Springer Nature: Paris, France, 2017. [Google Scholar]
- Van Dyke, P.; Havard, D.; Laneville, A. Effect of Ice and Snow on the Dynamics of~Transmission Line Conductors. In Atmospheric Icing of Power Networks; Farzaneh, M., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2008; pp. 171–228. [Google Scholar]
- Fan, S.; Jiang, X.; Sun, C.; Zhang, Z.; Shu, L. Temperature characteristic of DC ice-melting conductor. Cold Reg. Sci. Technol. 2011, 65, 29–38. [Google Scholar] [CrossRef]
- Cai, M.; Xu, Q.; Zhou, L.; Liu, X.; Huang, H. Aerodynamic Characteristics of Iced 8-bundle Conductors under Different Turbulence Intensities. KSCE J. Civ. Eng. 2019, 23, 4812–4823. [Google Scholar] [CrossRef]
- Cai, M.; Yang, X.; Huang, H.; Zhou, L. Investigation on Galloping of D-Shape Iced 6-Bundle Conductors in Transmission Tower Line. KSCE J. Civ. Eng. 2020, 24, 1799–1809. [Google Scholar] [CrossRef]
- Jiang, X.; Zhu, M.; Dong, L.; Hu, Q.; Zhang, Z.; Hu, J. Site experimental study on suspension-tension arrangement for preventing transmission lines from icing tripping. Int. J. Electr. Power Energy Syst. 2020, 119, 105935. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, X.; Virk, M.S. Ice accretion study of FXBW4-220 transmission line composite insulators and anti-icing geometry optimization. Electr. Power Syst. Res. 2021, 194, 107089. [Google Scholar] [CrossRef]
- Liu, X.; Min, G.; Cai, M.; Yan, B.; Wu, C. Two Simplified Methods for Galloping of Iced Transmission Lines. KSCE J. Civ. Eng. 2021, 25, 272–290. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Yue, S.; Zhang, X.; Li, C.; Zeng, W. Growth characteristics and influence analysis of insulator strings in natural icing. Electr. Power Syst. Res. 2024, 228, 110097. [Google Scholar] [CrossRef]
- Zhang, Z.; Jing, S.; Pang, G.; Gao, Y.; Wang, B.; Li, X.; Jiang, X. Performance analysis of novel anti-pollution and anti-icing composite insulators. Electr. Power Syst. Res. 2025, 241, 111350. [Google Scholar] [CrossRef]
- Dong, B.; Jiang, X.; Xiang, Z. Calculation model and experimental verification of equivalent ice thickness on overhead lines with tangent tower considering ice and wind loads. Cold Reg. Sci. Technol. 2022, 200, 103588. [Google Scholar] [CrossRef]
- Mou, Z.; Yan, B.; Yang, H.; Wu, K.; Wu, C.; Yang, X. Study on anti-galloping efficiency of rotary clamp spacers for eight bundle conductor line. Cold Reg. Sci. Technol. 2022, 193, 103414. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, H.; Wu, W.; Shu, L.; Wu, Y.; Jiang, X. Effects of rainfall on the corona characteristics of AC single conductor of 110 kV transmission lines. Electr. Power Syst. Res. 2024, 234, 110530. [Google Scholar] [CrossRef]
- Liu, X.; Lu, J.; Ye, Z.; Wu, C.; Zhang, B.; Lv, Z. Research on ice shedding and broken conductor in tower-line system based on CR method. Cold Reg. Sci. Technol. 2024, 222, 104195. [Google Scholar] [CrossRef]
- Wu, K.; Yan, B.; Yang, H.; Liu, Q.; Lu, J.; Liang, M. Characteristics of multi-span transmission lines following ice-shedding. Cold Reg. Sci. Technol. 2024, 218, 104082. [Google Scholar] [CrossRef]
- Cai, M.; Bao, W.; Tian, B.; Yang, S.; Min, G. Displacement response prediction of eight-bundle transmission tower-line system combining Proper Orthogonal Decomposition (POD) and ANNs. KSCE J. Civ. Eng. 2025, 29, 100178. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Y.; Yang, X.; Yang, Z.; Ouyang, Z.; Jiang, X.; Virk, M.S. Study on icing characteristics of bundled conductor of transmission line based on shadowing effect analysis. Cold Reg. Sci. Technol. 2025, 231, 104393. [Google Scholar] [CrossRef]
- Liu, X.; Chen, L.; Wu, C.; Ye, Z.; Zhang, B.; Tao, Y. Research on parameter identification of transmission line galloping model under different degrees of freedom. Appl. Math. Modell. 2025, 140, 115899. [Google Scholar] [CrossRef]
- Teng, Y.; Yan, B.; Zhou, X.; Yang, H.; Gao, Y.; Wu, K.; Deng, H. Response characteristic parameters of six-bundle conductor lines in ultra-heavy ice zones following ice-shedding. Cold Reg. Sci. Technol. 2025, 231, 104396. [Google Scholar] [CrossRef]
- Huang, G.; Yan, B.; Wen, N.; Wu, C.; Li, Q. Study on jump height of transmission lines after ice-shedding by reduced-scale modeling test. Cold Reg. Sci. Technol. 2019, 165, 102781. [Google Scholar] [CrossRef]
- Wolf, H.; Singer, S.; Pustaić, D.; Alujević, N. Numerical aspects of determination of natural frequencies of a power transmission line cable equipped with in-line fittings. Eng. Struct. 2018, 160, 510–518. [Google Scholar] [CrossRef]
- Zhang, M.; Shang, R.; Lu, Z.; Zhang, X.; Xie, K.; Zhang, B. Analysis of wind-induced response of down lead transmission line-connection fitting systems in ultrahigh-voltage substations. Eng. Struct. 2020, 206, 110144. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H.; Liu, H.; Wang, Z. Non-unit protection scheme for flexible DC transmission lines based on fitting the rate of change of line-mode voltage reverse traveling waves. Int. J. Electr. Power Energy Syst. 2025, 164, 110415. [Google Scholar] [CrossRef]
- Cai, D.; Yan, B.; Gao, Y.; Sun, Y.; Wang, H.; Yao, H.; Wu, C.; Zhang, B. Topography Optimization and Buckling Test of Tension Plates in UHVDC Transmission Lines. IEEE Trans. Power Deliv. 2023, 38, 1462–1471. [Google Scholar] [CrossRef]
- Ye, G.; Li, Z.; Wang, A.; Liu, Z.; Tang, R.; Huang, G. Tree-Based Surrogate Model for Predicting Aerodynamic Coefficients of Iced Transmission Conductor Lines. Infrastructures 2025, 10, 243. [Google Scholar] [CrossRef]
- Huang, G.; Wu, G.; Yang, Z.; Chen, X.; Wei, W. Development of surrogate models for evaluating energy transfer quality of high-speed railway pantograph-catenary system using physics-based model and machine learning. Appl. Energy 2023, 333, 120608. [Google Scholar] [CrossRef]
- Wen, N.; Yan, B.; Mou, Z.; Huang, G.; Yang, H.; Lv, X. Prediction models for dynamic response parameters of transmission lines after ice-shedding based on machine learning method. Electr. Power Syst. Res. 2022, 202, 107580. [Google Scholar] [CrossRef]
- Wu, K.; Yan, B.; Yang, H.; Lu, J.; Xue, Z.; Liang, M.; Teng, Y. Dynamic Response Characteristics of Isolated-Span Transmission Lines After Ice-Shedding. IEEE Trans. Power Deliv. 2023, 38, 3519–3530. [Google Scholar] [CrossRef]
- Huang, G.; Wu, G.; Guo, Y.; Liang, M.; Li, J.; Dai, J.; Yan, X.; Gao, G. Risk assessment models of power transmission lines undergoing heavy ice at mountain zones based on numerical model and machine learning. J. Clean. Prod. 2023, 415, 137623. [Google Scholar] [CrossRef]
- Havard, D.; Diana, G.; Vinogradov, A.; Cosmai, U.; Halsan, K.; Krispin, H.-J.; Mito, M.; Sunkle, D.; Dulhunty, P. State of the Art Survey On Spacers and Spacer Dampers 277; CIGRE: Paris, France, 2005. [Google Scholar]













| Diameter (mm) | Cross-Section Area (mm2) | Mass per Unit Length (kg/km) | Young’s Modulus (GPa) | |
|---|---|---|---|---|
| Conductor line and jumper line | 36.20 | 775.00 | 2337.90 | 63.7 |
| 10 mm Ice Thickness | 20 mm Ice Thickness | ||||
|---|---|---|---|---|---|
| 1/4 Span | 1/2 Span | 1/4 Span | 1/2 Span | ||
| Jump height (m) | Test results | 0.267 | 0.362 | 0.627 | 0.854 |
| Simulation results | 0.251 | 0.349 | 0.616 | 0.851 | |
| Relative error (%) | 5.99 | 3.59 | 1.75 | 0.35 | |
| Parameters | Label | Unit | Range |
|---|---|---|---|
| Ice thickness | T | mm | 0~50 |
| Wind speed | V | m/s | 0~30 |
| Wind direction | α | ° | −60~60 |
| Degree of non-uniform icing on windward sub-conductors | U1 | - | 0.5~1.5 |
| Degree of non-uniform icing on leeward sub-conductors | U2 | - | 0.5~1.5 |
| Ice-shedding rate | R | % | 0~100 |
| Non-uniform ice-shedding | S | - | [Yes, No] |
| Model | R2 | MSE | MAE |
|---|---|---|---|
| RF | 0.940 | 0.011 | 0.032 |
| XGBoost | 0.946 | 0.010 | 0.030 |
| MLF-DNN | 0.961 | 0.006 | 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Ye, G.; Liu, D.; Liu, Z.; Zhang, X.; Huang, G. Investigation on Bearing Characteristics for Critical Fittings of Transmission Lines Undergoing Coupled Ice–Wind Loads. Infrastructures 2025, 10, 328. https://doi.org/10.3390/infrastructures10120328
Li Z, Ye G, Liu D, Liu Z, Zhang X, Huang G. Investigation on Bearing Characteristics for Critical Fittings of Transmission Lines Undergoing Coupled Ice–Wind Loads. Infrastructures. 2025; 10(12):328. https://doi.org/10.3390/infrastructures10120328
Chicago/Turabian StyleLi, Zhiguo, Guoliang Ye, Dongjia Liu, Zhiyi Liu, Xiaohui Zhang, and Guizao Huang. 2025. "Investigation on Bearing Characteristics for Critical Fittings of Transmission Lines Undergoing Coupled Ice–Wind Loads" Infrastructures 10, no. 12: 328. https://doi.org/10.3390/infrastructures10120328
APA StyleLi, Z., Ye, G., Liu, D., Liu, Z., Zhang, X., & Huang, G. (2025). Investigation on Bearing Characteristics for Critical Fittings of Transmission Lines Undergoing Coupled Ice–Wind Loads. Infrastructures, 10(12), 328. https://doi.org/10.3390/infrastructures10120328

