Full Squats Enhance Performance and Body Composition, but Not Hypertrophy, Compared to Half Squats in Elite Young Tennis Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Anthropometrics
2.4.1. Leg Muscle Volume
- •
- h = height/length of the thigh (measured from hip to knee joint).
- •
- C₁ = circumference at the proximal end (near the hip).
- •
- C₂ = circumference at the distal end (near the knee).
2.4.2. Cross-Sectional Area (CSA) of the Thigh
2.5. Neuromuscular Performance
2.6. Training Program
2.7. Statistical Analyses
3. Results
3.1. Participants
3.2. Anthropometry and Body Composition
3.3. Neuromuscular Performance
4. Discussion
4.1. Limitations and Future Directions
4.2. Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gee, T.I.; Caplan, N.; Gibbon, K.C.; Howatson, G.; Thompson, K.G. Investigating the effects of typical rowing strength training practices on strength and power development and 2,000 m rowing performance. J. Hum. Kinet. 2016, 50, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Chelly, M.S.; Fathloun, M.; Cherif, N.; Ben Amar, M.; Tabka, Z.; Van Praagh, E. Effects of a back squat training program on leg power, jump, and sprint performances in junior soccer players. J. Strength. Cond. Res. 2009, 23, 2241–2249. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, L.M.; Klau, J.F.; Casa, D.J.; Kraemer, W.J.; Armstrong, L.E.; Maresh, C.M. The effects of resistance training on road cycling performance among highly trained cyclists: A systematic review. J. Strength. Cond. Res. 2010, 24, 560–566. [Google Scholar] [CrossRef]
- Kaabi, S.; Mabrouk, R.H.; Passelergue, P. Weightlifting is better than plyometric training to improve strength, counter movement jump, and change of direction skills in Tunisian elite male junior table tennis players. J. Strength. Cond. Res. 2022, 36, 2912–2919. [Google Scholar] [CrossRef] [PubMed]
- Sofiene, K.; Hermassi, S.; Safa, K.; Passelergue, P. Effect of an integrated resistance program based weightlifting exercises on improving physical performance of young table elite’s tennis players. Adv. Physi Educ. 2016, 6, 364. [Google Scholar] [CrossRef]
- Buckner, S.L.; Jessee, M.B.; Dankel, S.J.; Mattocks, K.T.; Abe, T.; Loenneke, J.P. Resistance exercise and sports performance: The minority report. Med. Hypotheses 2018, 113, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Badillo, J.J.G.; Serna, J.R. Bases de la Programación del Entrenamiento de Fuerza; Inde: Barcelona, Spain, 2002. [Google Scholar]
- Folland, J.P.; Williams, A.G. The adaptations to strength training: Morphological and neurological contributions to increased strength. Sports Med. 2007, 37, 145–168. [Google Scholar] [CrossRef]
- Miller, M.S.; Bedrin, N.G.; Ades, P.A.; Palmer, B.M.; Toth, M.J. Molecular determinants of force production in human skeletal muscle fibers: Effects of myosin isoform expression and cross-sectional area. Am. J. Physiol. Cell Physiol. 2015, 308, C473–C484. [Google Scholar] [CrossRef]
- Myer, G.D.; Kushner, A.M.; Brent, J.L.; Schoenfeld, B.J.; Hugentobler, J.; Lloyd, R.S.; Vermeil, A.; Chu, D.A.; Harbin, J.; McGill, S.M. The back squat: A proposed assessment of functional deficits and technical factors that limit performance. Strength. Cond. J. 2014, 36, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Cava, A.; Moran-Navarro, R.; Sanchez-Medina, L.; Gonzalez-Badillo, J.J.; Pallares, J.G. Velocity- and power-load relationships in the half, parallel and full back squat. J. Sports Sci. 2019, 37, 1088–1096. [Google Scholar] [CrossRef]
- Rhea, M.R.; Kenn, J.G.; Peterson, M.D.; Massey, D.; Simão, R.; Marin, P.J.; Favero, M.; Cardozo, D.; Krein, D. Joint-angle specific strength adaptations influence improvements in power in highly trained athletes. Hum. Mov. 2016, 17, 43–49. [Google Scholar] [CrossRef]
- Hartmann, H.; Wirth, K.; Klusemann, M. Analysis of the load on the knee joint and vertebral column with changes in squatting depth and weight load. Sports Med. 2013, 43, 993–1008. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Cava, A.M.; Courel-Ibáñez, J.; González-Badillo, J.J.; Morán-Navarro, R. Full squat produces greater neuromuscular and functional adaptations and lower pain than partial squats after prolonged resistance training. Eur. J. Sport. Sci. 2020, 20, 115–124. [Google Scholar] [CrossRef]
- Kubo, K.; Ikebukuro, T.; Yata, H. Effects of squat training with different depths on lower limb muscle volumes. Eur. J. Appl. Physiol. 2019, 119, 1933–1942. [Google Scholar] [CrossRef]
- Hammami, R.; Chaouachi, A.; Makhlouf, I.; Granacher, U.; Behm, D.G. Associations between balance and muscle strength, power performance in male youth athletes of different maturity status. Pediatr. Exerc. Sci. 2016, 28, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Helgerud, J.; Rodas, G.; Kemi, O.J.; Hoff, J. Strength and endurance in elite football players. Int. J. Sports Med. 2011, 32, 677–682. [Google Scholar] [CrossRef]
- Moore, S.A.; McKay, H.A.; Macdonald, H.; Nettlefold, L.; Baxter-Jones, A.D.; Cameron, N.; Brasher, P.M. Enhancing a Somatic Maturity Prediction Model. Med. Sci. Sports Exerc. 2015, 47, 1755–1764. [Google Scholar] [CrossRef]
- Deurenberg, P.; Pieters, J.J.; Hautvast, J.G. The assessment of the body fat percentage by skinfold thickness measurements in childhood and young adolescence. Br. J. Nutr. 1990, 63, 293–303. [Google Scholar] [CrossRef]
- Pr, J. Anthropometric determination of leg fat and muscle plus bone volume in young male and female adults. J. Physiol. 1969, 204, 63–66. [Google Scholar]
- Morse, C.I.; Thom, J.M.; Reeves, N.D.; Birch, K.M.; Narici, M.V. In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J. Appl. Physiol. 2005, 99, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Housh, D.J.; Housh, T.J.; Weir, J.P.; Weir, L.L.; Johnson, G.O.; Stout, J.R. Anthropometric estimation of thigh muscle cross-sectional area. Med. Sci. Sports Exerc. 1995, 27, 784–791. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; Perez, C.E.; Gonzalez-Badillo, J.J. Importance of the propulsive phase in strength assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef]
- Courel-Ibanez, J.; Martinez-Cava, A.; Moran-Navarro, R.; Escribano-Penas, P.; Chavarren-Cabrero, J.; Gonzalez-Badillo, J.J.; Pallares, J.G. Reproducibility and Repeatability of Five Different Technologies for Bar Velocity Measurement in Resistance Training. Ann. Biomed. Eng. 2019, 47, 1523–1538. [Google Scholar] [CrossRef]
- Pareja-Blanco, F.; Rodriguez-Rosell, D.; Sanchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; Yanez-Garcia, J.M.; Morales-Alamo, D.; Perez-Suarez, I.; Calbet, J.A.L.; et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sports 2017, 27, 724–735. [Google Scholar] [CrossRef] [PubMed]
- Behm, D.G.; Faigenbaum, A.D.; Falk, B.; Klentrou, P. Canadian Society for Exercise Physiology position paper: Resistance training in children and adolescents. Appl. Physiol. Nutr. Metab. 2008, 33, 547–561. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L. The youth physical development model: A new approach to long-term athletic development. Strength. Cond. J. 2012, 34, 61–72. [Google Scholar] [CrossRef]
- Blanca Mena, M.J.; Arnau Gras, J.; García de Castro, F.J.; Alarcón Postigo, R.; Bono Cabré, R. Non-normal data in repeated measures ANOVA: Impact on type I error and power. Psicothema 2023, 35, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Yen, M.; Lo, L.H. Examining test-retest reliability: An intra-class correlation approach. Nurs. Res. 2002, 51, 59–62. [Google Scholar] [CrossRef]
- Fleiss, J.L. Analysis of data from multiclinic trials. Control Clin. Trials 1986, 7, 267–275. [Google Scholar] [CrossRef]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef]
- Aronhime, S.; Calcagno, C.; Jajamovich, G.H.; Dyvorne, H.A.; Robson, P.; Dieterich, D.; Fiel, M.I.; Martel-Laferriere, V.; Chatterji, M.; Rusinek, H.; et al. DCE-MRI of the liver: Effect of linear and nonlinear conversions on hepatic perfusion quantification and reproducibility. J. Magn. Reson. Imaging 2014, 40, 90–98. [Google Scholar] [CrossRef]
- Bloomquist, K.; Langberg, H.; Karlsen, S.; Madsgaard, S.; Boesen, M.; Raastad, T. Effect of range of motion in heavy load squatting on muscle and tendon adaptations. Eur. J. Appl. Physiol. 2013, 113, 2133–2142. [Google Scholar] [CrossRef]
- Colado, J.C.; Gené-Morales, J.; Jiménez-Martínez, P.; Flandez, J.; Ferri-Caruana, A.M.; Babiloni-Lopez, C. Rating of perceived exertion in the first repetition is related to the total repetitions performed in elastic bands training. Mot. Control 2023, 27, 830–843. [Google Scholar] [CrossRef]
- Burd, N.A.; Andrews, R.J.; West, D.W.; Little, J.P.; Cochran, A.J.; Hector, A.J.; Cashaback, J.G.; Gibala, M.J.; Potvin, J.R.; Baker, S.K.; et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J. Physiol. 2012, 590, 351–362. [Google Scholar] [CrossRef]
- Stone, M.H.; Hornsby, G.; Mizuguchi, S.; Sato, K.; Gahreman, D.; Duca, M.; Carroll, K.; Ramsey, M.W.; Stone, M.E.; Haff, G.G. The Use of Free Weight Squats in Sports: A Narrative Review-Squatting Movements, Adaptation, and Sports Performance: Physiological. J. Strength. Cond. Res. 2024, 38, 1494–1508. [Google Scholar] [CrossRef] [PubMed]
- Takai, Y.; Fukunaga, Y.; Fujita, E.; Mori, H.; Yoshimoto, T.; Yamamoto, M.; Kanehisa, H. Effects of body mass-based squat training in adolescent boys. J. Sports Sci. Med. 2013, 12, 60–65. [Google Scholar] [PubMed]


| Weeks | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 |
|---|---|---|---|---|---|---|---|---|
| %1RM | 60% | 60% | 70% | 70% | 60% | 60% | 70% | 70% |
| Full squat training (FST) | 3 × 8 | 4 × 8 | 4 × 10 | 5 × 12 | 3 × 8 | 4 × 10 | 5 × 12 | 5 × 12 |
| Half squat training (HST) | 3 × 8 | 4 × 8 | 4 × 10 | 5 × 12 | 3 × 8 | 4 × 10 | 5 × 12 | 5 × 12 |
| Training Group | N | Mean | Std. Deviation | |
|---|---|---|---|---|
| Age (years) | FST | 14 | 13.96 | 0.95 |
| HST | 14 | 13.79 | 0.89 | |
| Height (cm) | FST | 14 | 166.79 | 13.06 |
| HST | 14 | 165.37 | 9.66 | |
| Sitting height (cm) | FST | 14 | 84.35 | 6.13 |
| HST | 14 | 80.74 | 5.38 | |
| Body mass (kg) | FST | 14 | 59.19 | 8.66 |
| HST | 14 | 55.28 | 8.74 | |
| Body fat (%) | FST | 14 | 15.02 | 2.61 |
| HST | 14 | 13.66 | 2.80 | |
| PHV (years) | FST | 14 | 0.48 | 1.11 |
| HST | 14 | 0.41 | 0.84 | |
| APHV (years) | FST | 14 | 13.62 | 0.45 |
| HST | 14 | 13.81 | 0.33 |
| Measure | Training Group | Time | Mean | Std. Dev | 95% Confidence Interval | Significance (Time) | Effect Size | |
|---|---|---|---|---|---|---|---|---|
| Lower | Upper | |||||||
| Body mass (kg) | FST | Pre-intervention | 59.19 | 8.66 | 54.23 | 64.14 | 0.403 | 0.03 |
| Post-intervention | 59.43 | 9.36 | 54.49 | 64.37 | ||||
| HST | Pre-intervention | 55.28 | 8.74 | 50.33 | 60.23 | <0.001 | 0.18 | |
| Post-intervention | 56.93 | 9.24 | 51.99 | 61.87 | ||||
| Body fat (%) | FST | Pre-intervention | 15.02 | 2.61 | 13.53 | 16.51 | <0.001 | 2.05 |
| Post-intervention | 9.62(0.032) | 2.80 | 8.31 | 10.92 | ||||
| HST | Pre-intervention | 13.66 | 1.93 | 12.17 | 15.15 | <0.001 | 0.72 | |
| Post-intervention | 11.66 | 2.75 | 10.35 | 12.96 | ||||
| Muscle volume of the thigh (cm3) | FST | Pre-intervention | 3.19 | 0.78 | 2.82 | 3.56 | <0.001 | 2.26 |
| Post-intervention | 4.92 | 0.55 | 4.56 | 5.28 | ||||
| HST | Pre-intervention | 3.07 | 0.74 | 2.70 | 3.44 | <0.001 | 3.03 | |
| Post-intervention | 4.79 | 0.57 | 4.43 | 5.15 | ||||
| Muscle volume of the calf (cm3) | FST | Pre-intervention | 1.51 | 0.28 | 1.36 | 1.65 | <0.001 | 4.54 |
| Post-intervention | 3.62 | 0.23 | 3.41 | 3.84 | ||||
| HST | Pre-intervention | 1.39 | 0.47 | 1.24 | 1.53 | <0.001 | 7.89 | |
| Post-intervention | 3.52 | 0.30 | 3.30 | 3.73 | ||||
| Muscle volume of the leg (cm3) | FST | Pre-intervention | 4.69 | 1.04 | 4.20 | 5.18 | <0.001 | 2.04 |
| Post-intervention | 6.80 | 0.72 | 6.32 | 7.28 | ||||
| HST | Pre-intervention | 4.46 | 1.01 | 3.97 | 4.95 | <0.001 | 3.04 | |
| Post-intervention | 6.65 | 0.72 | 6.17 | 7.13 | ||||
| Cross-sectional area 1/2 thigh (cm2) | FST | Pre-intervention | 119.88 | 30.82 | 105.42 | 134.35 | <0.001 | 0.35 |
| Post-intervention | 130.95 | 20.91 | 116.48 | 145.41 | ||||
| HST | Pre-intervention | 109.99 | 30.90 | 95.52 | 124.46 | <0.001 | 0.46 | |
| Post-intervention | 121.04 | 20.79 | 106.57 | 135.50 | ||||
| Cross-sectional area max thigh (cm2) | FST | Pre-intervention | 159.89 | 48.04 | 139.03 | 180.75 | <0.001 | 0.43 |
| Post-intervention | 180.86 | 24.02 | 159.98 | 201.73 | ||||
| HST | Pre-intervention | 151.91 | 48.06 | 131.05 | 172.78 | <0.001 | 0.88 | |
| Post-intervention | 173.00 | 24.04 | 152.13 | 193.88 | ||||
| Measure | Group | Time | Mean | Std. Dev | 95% Confidence Interval | Significance (Time) | Effect Size | |
|---|---|---|---|---|---|---|---|---|
| Lower | Upper | |||||||
| Mean propulsive velocity at 50%1RM (m/s) | FST | Pre-intervention | 0.54 | 0.03 | 0.52 | 0.55 | <0.001 | 2.47 |
| Post-intervention | 0.64(<0.001) | 0.03 | 0.61 | 0.67 | ||||
| HST | Pre-intervention | 0.52 | 0.05 | 0.50 | 0.53 | 0.014 | 0.92 | |
| Post-intervention | 0.56 | 0.06 | 0.53 | 0.59 | ||||
| Mean propulsive velocity at 45%1RM (m/s) | FST | Pre-intervention | 0.62 | 0.03 | 0.61 | 0.64 | 0.008 | 4.07 |
| Post-intervention | 0.73(<0.001) | 0.03 | 0.71 | 0.75 | ||||
| HST | Pre-intervention | 0.64 | 0.03 | 0.63 | 0.66 | 0.008 | 0.82 | |
| Post-intervention | 0.67 | 0.04 | 0.65 | 0.69 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammami, R.; Jerez-Martínez, A.; Jiménez-Martínez, P.; Alix-Fages, C.; Rebai, H.; Kassis, O.; Juesas, Á.; Balsalobre-Fernández, C.; Colado, J.C.; Gene-Morales, J. Full Squats Enhance Performance and Body Composition, but Not Hypertrophy, Compared to Half Squats in Elite Young Tennis Players. J. Funct. Morphol. Kinesiol. 2025, 10, 440. https://doi.org/10.3390/jfmk10040440
Hammami R, Jerez-Martínez A, Jiménez-Martínez P, Alix-Fages C, Rebai H, Kassis O, Juesas Á, Balsalobre-Fernández C, Colado JC, Gene-Morales J. Full Squats Enhance Performance and Body Composition, but Not Hypertrophy, Compared to Half Squats in Elite Young Tennis Players. Journal of Functional Morphology and Kinesiology. 2025; 10(4):440. https://doi.org/10.3390/jfmk10040440
Chicago/Turabian StyleHammami, Raouf, Agustín Jerez-Martínez, Pablo Jiménez-Martínez, Carlos Alix-Fages, Haithem Rebai, Oussema Kassis, Álvaro Juesas, Carlos Balsalobre-Fernández, Juan C. Colado, and Javier Gene-Morales. 2025. "Full Squats Enhance Performance and Body Composition, but Not Hypertrophy, Compared to Half Squats in Elite Young Tennis Players" Journal of Functional Morphology and Kinesiology 10, no. 4: 440. https://doi.org/10.3390/jfmk10040440
APA StyleHammami, R., Jerez-Martínez, A., Jiménez-Martínez, P., Alix-Fages, C., Rebai, H., Kassis, O., Juesas, Á., Balsalobre-Fernández, C., Colado, J. C., & Gene-Morales, J. (2025). Full Squats Enhance Performance and Body Composition, but Not Hypertrophy, Compared to Half Squats in Elite Young Tennis Players. Journal of Functional Morphology and Kinesiology, 10(4), 440. https://doi.org/10.3390/jfmk10040440

