The Relationship Between Physical Activity and Gait Rhythm with Motor Imagery -Trial Using the Finger Tap Test-
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Materials
2.3. Rhythmic Ability Assessments
2.4. Motor Imagery Assessments
2.5. Data Analysis
3. Results
3.1. Group Attributes
3.2. Cognitive Function (MoCA-J)
3.3. Rhythm Variables
3.4. Delta (∆) Variables
3.5. Actual Walking Rhythm
3.6. ANCOVA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HA-Group | High activity group |
LA-Group | Low activity group |
MoCA-J | Japanese version of Montreal Cognitive Assessment |
C-walking | Comfortable walking |
M-walking | Maximum walking |
TUG | Timed Up and Go test |
iTUG | imaged Timed Up and Go test |
References
- Decety, J.; Jeannerod, M. Mentally simulated movements in virtual reality: Does fitts’s law hold in motor imagery? Behav. Brain Res. 1995, 72, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Jeannerod, M. The representing brain: Neural correlates of motor intention and imagery. Brain Behav. Sci. 1994, 17, 187–202. [Google Scholar] [CrossRef]
- Jeannerod, M. Mental imagery in the motor context. Neuropsychologia 1995, 33, 1419–1433. [Google Scholar] [CrossRef] [PubMed]
- Rozand, V.; Lebon, F.; Papaxanthis, C.; Lepers, R. Does a mental training session induce neuromuscular fatigue? Med. Sci. Sports Exerc. 2014, 46, 1981–1989. [Google Scholar] [CrossRef]
- Mateo, S.; Di Rienzo, F.; Bergeron, V.; Guillot, A.; Collet, C. Motor imagery reinforces brain compensation of reach-to-grasp movement after cervical spinal cord injury. Front. Behav. Neurosci. 2015, 9, 234. [Google Scholar] [CrossRef]
- Guillot, A.; Tolleron, C.; Collet, C. Does motor imagery enhance stretching and flexibility. J. Sports Sci. 2010, 28, 291–298. [Google Scholar] [CrossRef]
- Lebon, F.; Collet, C.; Guillot, A. Benefits of motor imagery training on muscle strength. J. Strength Cond. Res. 2010, 24, 1680–1687. [Google Scholar] [CrossRef]
- Mizuguchi, N.; Nakata, H.; Uchida, Y.; Kanosue, K. Motor imagery and sport performance. J. Phys. Fit. Sports Med. 2012, 1, 103–111. [Google Scholar] [CrossRef]
- Itotani, K.; Suganuma, I.; Morimoto, S.; Nakai, H.; Ogawa, N. The Relationship between Restrictions on Going Out and Motor Imagery among Medical University Students in Japan-Research with Small Samples. Life 2023, 13, 797. [Google Scholar] [CrossRef]
- Iacono, A.D.; Ashcroft, K.U.R.T.I.S.; Zubac, D.A.M.I.R. Ain’t just imagination! Effects of motor imagery training on strength and power performance of athletes during detraining. Med. Sci. Sports Exerc. 2021, 53, 2324–2332. [Google Scholar] [CrossRef]
- Pascual-Leone, A.; Nquyet, D.; Cohen, L.G.; Brasil-Neto, J.P.; Cammarota, A.; Hallett, M. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophysiol. 1995, 74, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Mulder, T.; Zijistra, S.; Zijlstra, W.; Hochstenbach, J. The role of motor imagery in learning a totally novel movement. Exp. Brain Res. 2004, 154, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Rozand, V.; Lebon, F.; Stapley, P.J.; Papaxanthis, C.; Lepers, R. A prolonged motor imagery session alter imagined and actual movement durations: Potential implications for neurorehabilitation. Behav. Brain Res. 2016, 297, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Koshiro, H.; Kawakami, M. Using the Imagined Timed Up and Go Test to Identify Fall Risk over the 6-Month Period after Discharge in Patients with Stroke. Jpn. J. Rehabil. Med. 2015, 52, 352–357. [Google Scholar] [CrossRef]
- Beauchet, O.; Annweiler, C.; Assal, F.; Bridenbaugh, S.; Herrmann, F.R.; Kressig, R.W.; Allali, G. Imagined Timed Up & Go test: A new tool to assess higher-level gait and balance disorders in older adults? J. Neurol. Sci. 2010, 294, 102–106. [Google Scholar] [CrossRef]
- Bridenbaugh, S.A.; Beauchet, O.; Annweiler, C.; Allali, G.; Herrmann, F.; Kressig, R.W. Association between dual task-related decrease in walking speed and real versus imagined Timed Up and Go test performance. Aging Clin. Exp. Res. 2013, 25, 283–289. [Google Scholar] [CrossRef]
- Beauchet, O.; Launay, C.P.; Sejdić, E.; Allali, G.; Annweiler, C. Motor imagery of gait: A new way to detect mild cognitive impairment? J. Neuroeng. Rehabil. 2014, 11, 66. [Google Scholar] [CrossRef]
- Gardner, A.W.; Poehlman, E.T. Assessment of free-living daily physical activity in older claudicants: Validation against the doubly labeled water technique. J. Gerontol. A Biol. Sci. Med. Sci. 1998, 53, M275–M280. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Murase, N.; Katsumura, T.; Ueda, C.; Inoue, S.; Shimomitsu, T. Validity and reliability of Japanese version of International Physical Activity Questionnaire. J. Health Welf. Stat. 2002, 49, 1–9. Available online: https://www.hws-kyokai.or.jp/images/ronbun/all/200210-1.pdf (accessed on 3 February 2024). (In Japanese).
- Fujiwara, Y.; Suzuki, H.; Yasunaga, M.; Sugiyama, M.; Ijuin, M.; Sakuma, N.; Shinkai, S. Brief screening tool for mild cognitive impairment in older Japanese: Validation of the Japanese version of the Montreal Cognitive Assessment. Geriatr. Gerontol. Int. 2010, 10, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Edith, V.D.; Jeska, B.; Valerio, L. Instructed versus spontaneous entrainment of running cadence to music tempo. Ann. N. Y. Acad. Sci. 2021, 1, 91–102. [Google Scholar] [CrossRef]
- Hidde, P.P.; Tien, C.; Rosemary, J.K.; Emily, B.; Adrian, B. Sitting time and all-cause mortality risk in 222,497 Australian adults. Arch. Intern. Med. 2012, 172, 494–500. [Google Scholar] [CrossRef]
- Koyama, T.; Ozaki, E.; Kuriyama, N.; Tomida, S.; Yoshida, T.; Uehara, R.; Miura, K. Effect of underlying cardiometabolic diseases on the association between sedentary time and all-cause mortality in a large Japanese population: A cohort analysis based on the J-MICC study. J. Am. Heart Assoc. 2021, 10, e018293. [Google Scholar] [CrossRef]
- Kameda, M.; Niikawa, K.; Uematsu, A.; Tanaka, M. Sensory and motor representations of internalized rhythms in the cerebellum and basal ganglia. Proc. Natl. Acad. Sci. USA 2023, 120, e2221641120. [Google Scholar] [CrossRef]
- Breska, A.; Ivry, R.B. The human cerebellum is essential for modulating perceptual sensitivity based on temporal expectations. Elife 2021, 10, e66743. [Google Scholar] [CrossRef]
- Repp, B.H. Sensorimotor synchronization: A review of the tapping literature. Psychon. Bull. Rev. 2005, 12, 969–992. [Google Scholar] [CrossRef]
- Bijsterbosch, J.D.; Lee, K.H.; Hunter, M.D.; Tsoi, D.T.; Lankappa, S.; Wilkinson, I.D.; Woodruff, P.W. The role of the cerebellum in sub-and supraliminal error correction during sensorimotor synchronization: Evidence from fMRI and TMS. J. Cogn. Neurosci. 2011, 23, 1100–1112. [Google Scholar] [CrossRef]
- Robin, N.; Coudevylle, G.R.; Hue, O.; Toussaint, L. The influences of tropical climate on imagined walking time. J. Cogn. Psychol. 2018, 30, 98–107. [Google Scholar] [CrossRef]
Variables | Mean (SD) or Number (%) | |||||||
---|---|---|---|---|---|---|---|---|
Total | HA-Group | LA-Group | p Value | Effect Size | ||||
n = 28 | n = 8 | n = 20 | (r, φ) | |||||
Age, y | 44.6 | (27.1) | 65.1 | (18.9) | 36.6 | (25.8) | 0.009 | 0.48 |
Sex, male | 4 | (14.3) | 1 | (12.5) | 3 | (15.0) | n.s. | |
Height, cm | 158.9 | (7.9) | 155.4 | (6.5) | 160.3 | (8.2) | n.s. | 0.28 |
Weight, kg | 52.9 | (6.5) | 51.6 | (5.2) | 53.5 | (6.9) | n.s. | 0.13 |
BMI, kg/m2 | 20.9 | (1.9) | 21.4 | (1.6) | 20.8 | (2.1) | n.s. | 0.14 |
Sitting or lying down time, h/day | 6.2 | (4.1) | 2.1 | (1.2) | 7.9 | (3.6) | 0.0001 | 0.66 |
Sleep time, h/day | 6.6 | (1.4) | 6.5 | (1.3) | 6.6 | (1.5) | n.s. | 0.03 |
Crude Model | Mean (SD) or Number (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Total | HA-Group | LA-Group | p Value | Effect Size | ||||
n = 28 | n = 8 | n = 20 | (r, φ) | ||||||
MoCA-J, score | 26.5 | (2.9) | 24.1 | (3.2) | 27.5 | (2.2) | 0.004 a | 0.53 | |
Rhythm ability, BPM | |||||||||
Visual rhythm | 99.8 | (2.6) | 98.3 | (2.2) | 100.4 | (2.7) | 0.049 b | 0.35 | |
Auditory rhythm | 145.9 | (54.8) | 178.4 | (48.2) | 130.7 | (53.9) | 0.023 b | 0.41 | |
Mental C-walking rhythm | 88.6 | (22.1) | 104.3 | (24.0) | 82.3 | (190.0) | 0.017 a | 0.45 | |
Mental M-walking rhythm | 124.5 | (36.9) | 156.7 | (42.0) | 111.6 | (27.5) | 0.002 a | 0.55 | |
Actual C-walking rhythm, BPM | 118.6 | (10.2) | 121.8 | (11.4) | 117.3 | (9.9) | n.s. | 0.20 | |
Actual M-walking rhythm, BPM | 153.0 | (22.1) | 139.1 | (8.6) | 158.6 | (24.1) | 0.025 b | 0.39 | |
Δ Rhythm ability, % | |||||||||
Δ Visual rhythm | 0.2 | (2.6) | 1.8 | (2.2) | −0.4 | (2.6) | 0.049 b | 0.35 | |
Δ Auditory rhythm | 20.1 | (38.4) | −2.2 | (31.5) | 31.4 | (38.5) | 0.023 b | 0.41 | |
Δ Mental C-walking rhythm | −14.9 | (31.6) | −37.6 | (28.8) | −5.8 | (30.3) | 0.015 a | 0.46 | |
Δ Mental M-walking rhythm | 23.1 | (31.9) | −8.9 | (23.9) | 35.9 | (26.2) | 0.001 a | 0.63 | |
Walking time per week, h | 6.7 | (7.9) | 4.9 | (6.9) | 7.5 | (8.3) | n.s. | 0.22 | |
TUG, s | 8.2 | (1.7) | 8.9 | (2.7) | 7.9 | (1.0) | n.s. | 0.30 | |
iTUG, s | 6.5 | (1.7) | 6.1 | (2.0) | 6.6 | (1.5) | n.s. | 0.14 | |
Δ TUG, % | 23.9 | (27.8) | 37.1 | (39.6) | 18.6 | (20.5) | n.s. | 0.29 |
Adjusted Model 1 | Mean (SD) or Number (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Total | HA-Group | LA-Group | p Value | Effect Size | ||||
n = 28 | n = 8 | n = 20 | (η2) | ||||||
MoCA-J, score | 26.5 | (2.9) | 24.1 | (3.2) | 27.5 | (2.2) | n.s. | 0.12 | |
Rhythm ability, BPM | |||||||||
Visual rhythm | 99.8 | (2.6) | 98.3 | (2.2) | 100.4 | (2.7) | n.s. | 0.12 | |
Auditory rhythm | 145.9 | (54.8) | 178.4 | (48.2) | 130.7 | (53.9) | n.s. | 0.11 | |
Mental C-walking rhythm | 88.6 | (22.1) | 104.3 | (24.0) | 82.3 | (19.0) | n.s. | 0.07 | |
Mental M-walking rhythm | 124.5 | (36.9) | 156.7 | (42.0) | 111.6 | (27.5) | 0.031 | 0.17 | |
Actual C-walking rhythm, BPM | 118.6 | (10.2) | 121.8 | (11.4) | 117.3 | (9.9) | n.s. | 0.00 | |
Actual M-walking rhythm, BPM | 153.0 | (22.1) | 139.1 | (8.6) | 158.6 | (24.1) | n.s. | 0.05 | |
Δ Rhythm ability, % | |||||||||
Δ Visual rhythm | 0.2 | (2.6) | 1.8 | (2.2) | −0.4 | (2.6) | n.s. | 0.12 | |
Δ Auditory rhythm | 20.1 | (38.4) | −2.2 | (31.5) | 31.4 | (38.5) | n.s. | 0.12 | |
Δ Mental C-walking rhythm | −14.9 | (31.6) | −37.6 | (28.8) | −5.8 | (30.3) | n.s. | 0.09 | |
Δ Mental M-walking rhythm | 23.1 | (31.9) | −8.9 | (23.9) | 35.9 | (26.2) | 0.009 | 0.24 | |
Walking time per week, h | 6.7 | (7.9) | 4.9 | (6.9) | 7.5 | (8.3) | n.s. | 0.001 | |
TUG, s | 8.2 | (1.7) | 8.9 | (2.7) | 7.9 | (1.0) | n.s. | 0.03 | |
iTUG, s | 6.5 | (1.7) | 6.1 | (2.0) | 6.6 | (1.5) | n.s. | 0.052 | |
Δ TUG, % | 23.9 | (27.8) | 37.1 | (39.6) | 18.6 | (20.5) | n.s. | 0.08 |
Adjusted Model 2 | Mean (SD) or Number (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Total | HA-Group | LA-Group | p Value | Effect Size | ||||
n = 28 | n = 8 | n = 20 | (η2) | ||||||
MoCA-J, score | 26.5 | (2.9) | 24.1 | (3.2) | 27.5 | (2.2) | n.s. | 0.12 | |
Rhythm ability, BPM | |||||||||
Visual rhythm | 99.8 | (2.6) | 98.3 | (2.2) | 100.4 | (2.7) | n.s. | 0.12 | |
Auditory rhythm | 145.9 | (54.8) | 178.4 | (48.2) | 130.7 | (53.9) | n.s. | 0.11 | |
Mental C-walking rhythm | 88.6 | (22.1) | 104.3 | (24.0) | 82.3 | (19.0) | n.s. | 0.07 | |
Mental M-walking rhythm | 124.5 | (36.9) | 156.7 | (42.0) | 111.6 | (27.5) | 0.019 | 0.24 | |
Actual C-walking rhythm, BPM | 118.6 | (10.2) | 121.8 | (11.4) | 117.3 | (9.9) | n.s. | 0.00 | |
Actual M-walking rhythm, BPM | 153.0 | (22.1) | 139.1 | (8.6) | 158.6 | (24.1) | n.s. | 0.05 | |
Δ Rhythm ability, % | |||||||||
Δ Visual rhythm | 0.2 | (2.6) | 1.8 | (2.2) | −0.4 | (2.6) | n.s. | 0.12 | |
Δ Auditory rhythm | 20.1 | (38.4) | −2.2 | (31.5) | 31.4 | (38.5) | n.s. | 0.12 | |
Δ Mental C-walking rhythm | −14.9 | (31.6) | −37.6 | (28.8) | −5.8 | (30.3) | n.s. | 0.09 | |
Δ Mental M-walking rhythm | 23.1 | (31.9) | −8.9 | (23.9) | 35.9 | (26.2) | 0.008 | 0.30 | |
Walking time per week, h | 6.7 | (7.9) | 4.9 | (6.9) | 7.5 | (8.3) | n.s. | 0.001 | |
TUG, s | 8.2 | (1.7) | 8.9 | (2.7) | 7.9 | (1.0) | n.s. | 0.03 | |
iTUG, s | 6.5 | (1.7) | 6.1 | (2.0) | 6.6 | (1.5) | n.s. | 0.052 | |
Δ TUG, % | 23.9 | (27.8) | 37.1 | (39.6) | 18.6 | (20.5) | n.s. | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itotani, K.; Taki, M.; Ueno, S.; Nakai, H.; Miki, Y.; Suganuma, I.; Harada, S.; Ogawa, N. The Relationship Between Physical Activity and Gait Rhythm with Motor Imagery -Trial Using the Finger Tap Test-. J. Funct. Morphol. Kinesiol. 2025, 10, 94. https://doi.org/10.3390/jfmk10010094
Itotani K, Taki M, Ueno S, Nakai H, Miki Y, Suganuma I, Harada S, Ogawa N. The Relationship Between Physical Activity and Gait Rhythm with Motor Imagery -Trial Using the Finger Tap Test-. Journal of Functional Morphology and Kinesiology. 2025; 10(1):94. https://doi.org/10.3390/jfmk10010094
Chicago/Turabian StyleItotani, Keisuke, Mirai Taki, Shinnosuke Ueno, Hina Nakai, Yuta Miki, Ippei Suganuma, Shun Harada, and Noriyuki Ogawa. 2025. "The Relationship Between Physical Activity and Gait Rhythm with Motor Imagery -Trial Using the Finger Tap Test-" Journal of Functional Morphology and Kinesiology 10, no. 1: 94. https://doi.org/10.3390/jfmk10010094
APA StyleItotani, K., Taki, M., Ueno, S., Nakai, H., Miki, Y., Suganuma, I., Harada, S., & Ogawa, N. (2025). The Relationship Between Physical Activity and Gait Rhythm with Motor Imagery -Trial Using the Finger Tap Test-. Journal of Functional Morphology and Kinesiology, 10(1), 94. https://doi.org/10.3390/jfmk10010094