Assessment of Isometric Shoulder Strength in Swimmers: A Validation and Reliability Study of the ASH and iASH Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Inclusion and Exclusion Criteria
2.3. ASH and iASH Tests
2.4. Study Timeline
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASH | Athletic Shoulder Test |
iASH | Inverse Athletic Shoulder Test |
ICC | Intraclass Correlation Coefficient |
SEM | Standard Error of Measurement |
MDC90 | Minimal Detectable Change at 90% Confidence |
CV% | Coefficient of Variation Percentage |
TE | Typical Error |
NPF | Peak Force (Newton) |
SD | Standard Deviation |
CIM | Confidence Interval of the Mean |
References
- Pozzi, F.; Plummer, H.A.; Shanley, E.; Thigpen, C.A.; Bauer, C.; Wilson, M.L.; Michener, L.A. Preseason Shoulder Range of Motion Screening and In-Season Risk of Shoulder and Elbow Injuries in Overhead Athletes: Systematic Review and Meta-Analysis. Br. J. Sports Med. 2020, 54, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, B.; Hogben, P.; Singh, N.; Tulloch, L.; Cohen, D.D. The Athletic Shoulder (ASH) Test: Reliability of a Novel Upper Body Isometric Strength Test in Elite Rugby Players. BMJ Open Sport Exerc. Med. 2018, 4, e000365. [Google Scholar] [CrossRef]
- Trunt, A.; Fisher, B.T.; MacFadden, L.N. Athletic Shoulder Test Differences Exist Bilaterally in Healthy Pitchers. Int. J. Sports Phys. Ther. 2022, 17, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Bak, K. The Practical Management of Swimmer’s Painful Shoulder: Etiology, Diagnosis, and Treatment. Clin. J. Sport Med. 2010, 20, 386–390. [Google Scholar] [CrossRef]
- Bak, K.; Faunø, P. Clinical Findings in Competitive Swimmers with Shoulder Pain. Am. J. Sports Med. 1997, 25, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Brushøj, C.; Bak, K.; Johannsen, H.V.; Faunø, P. Swimmers’ Painful Shoulder Arthroscopic Findings and Return Rate to Sports. Scand. J. Med. Sci. Sports 2007, 17, 373–377. [Google Scholar] [CrossRef]
- Wanivenhaus, F.; Fox, A.J.S.; Chaudhury, S.; Rodeo, S.A. Epidemiology of Injuries and Prevention Strategies in Competitive Swimmers. Sports Health 2012, 4, 246–251. [Google Scholar] [CrossRef]
- Tessaro, M.; Granzotto, G.; Poser, A.; Plebani, G.; Rossi, A. Shoulder pain in competitive teenage swimmers and it’s prevention: A retrospective epidemiological cross sectional study of prevalence. Int. J. Sports Phys. Ther. 2017, 12, 798–811. [Google Scholar] [CrossRef]
- Tate, A.; Turner, G.N.; Knab, S.E.; Jorgensen, C.; Strittmatter, A.; Michener, L.A. Risk Factors Associated With Shoulder Pain and Disability Across the Lifespan of Competitive Swimmers. J. Athl. Train. 2012, 47, 149–158. [Google Scholar] [CrossRef]
- Rupp, S.; Berninger, K.; Hopf, T. Shoulder Problems in High Level Swimmers--Impingement, Anterior Instability, Muscular Imbalance? Int. J. Sports Med. 1995, 16, 557–562. [Google Scholar] [CrossRef]
- McLaine, S.J.; Ginn, K.A.; Fell, J.W.; Bird, M.-L. Isometric Shoulder Strength in Young Swimmers. J. Sci. Med. Sport 2018, 21, 35–39. [Google Scholar] [CrossRef] [PubMed]
- McMaster, W.C.; Long, S.C.; Caiozzo, V.J. Shoulder Torque Changes in the Swimming Athlete. Am. J. Sports Med. 1992, 20, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Batalha, N.M.; Raimundo, A.M.; Tomas-Carus, P.; Barbosa, T.M.; Silva, A.J. Shoulder Rotator Cuff Balance, Strength, and Endurance in Young Swimmers During a Competitive Season. J. Strength Cond. Res. 2013, 27, 2562–2568. [Google Scholar] [CrossRef]
- Ramsi, M.; Swanik, K.A.; Swanik, C.B.; Straub, S.; Mattacola, C. Shoulder-Rotator Strength of High School Swimmers Over the Course of a Competitive Season. J. Sport Rehabil. 2004, 13, 9–18. [Google Scholar] [CrossRef]
- Liaghat, B.; Juul-Kristensen, B.; Frydendal, T.; Larsen, C.M.; Søgaard, K.; Salo, A.I.T. Competitive Swimmers with Hypermobility Have Strength and Fatigue Deficits in Shoulder Medial Rotation. J. Electromyogr. Kinesiol. 2018, 39, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Buoite Stella, A.; Cargnel, A.; Raffini, A.; Mazzari, L.; Martini, M.; Ajčević, M.; Accardo, A.; Deodato, M.; Murena, L. Shoulder Tensiomyography and Isometric Strength in Swimmers before and after a Fatiguing Protocol. J. Athl. Train. 2024, 59, 738–744. [Google Scholar] [CrossRef]
- Bagordo, A.; Ciletti, K.; Kemp-Smith, K.; Simas, V.; Climstein, M.; Furness, J. Isokinetic Dynamometry as a Tool to Predict Shoulder Injury in an Overhead Athlete Population: A Systematic Review. Sports 2020, 8, 124. [Google Scholar] [CrossRef]
- Bak, K.; Magnusson, S.P. Shoulder Strength and Range of Motion in Symptomatic and Pain-Free Elite Swimmers. Am. J. Sports Med. 1997, 25, 454–459. [Google Scholar] [CrossRef]
- Walker, H.; Gabbe, B.; Wajswelner, H.; Blanch, P.; Bennell, K. Shoulder Pain in Swimmers: A 12-Month Prospective Cohort Study of Incidence and Risk Factors. Phys. Ther. Sport 2012, 13, 243–249. [Google Scholar] [CrossRef]
- Matsuura, Y.; Matsunaga, N.; Akuzawa, H.; Kojima, T.; Oshikawa, T.; Iizuka, S.; Okuno, K.; Kaneoka, K. Difference in Muscle Synergies of the Butterfly Technique with and without Swimmer’s Shoulder. Sci. Rep. 2022, 12, 14546. [Google Scholar] [CrossRef]
- De Martino, I.; Rodeo, S.A. The Swimmer’s Shoulder: Multi-Directional Instability. Curr. Rev. Musculoskelet. Med. 2018, 11, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Kottner, J.; Audige, L.; Brorson, S.; Donner, A.; Gajewski, B.J.; Hróbjartsson, A.; Roberts, C.; Shoukri, M.; Streiner, D.L. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) Were Proposed. Int. J. Nurs. Stud. 2011, 48, 661–671. [Google Scholar] [CrossRef]
- Harvill, L.M. Standard Error of Measurement: An NCME Instructional Module on. Educ. Meas. Issues Pract. 1991, 10, 33–41. [Google Scholar] [CrossRef]
- Turner, D.; Schünemann, H.J.; Griffith, L.E.; Beaton, D.E.; Griffiths, A.M.; Critch, J.N.; Guyatt, G.H. The Minimal Detectable Change Cannot Reliably Replace the Minimal Important Difference. J. Clin. Epidemiol. 2010, 63, 28–36. [Google Scholar] [CrossRef]
- Bedeian, A.G.; Mossholder, K.W. On the Use of the Coefficient of Variation as a Measure of Diversity. Organ. Res. Methods 2000, 3, 285–297. [Google Scholar] [CrossRef]
- Drigny, J.; Gauthier, A.; Reboursière, E.; Guermont, H.; Gremeaux, V.; Edouard, P. Shoulder Muscle Imbalance as a Risk for Shoulder Injury in Elite Adolescent Swimmers: A Prospective Study. J. Hum. Kinet. 2020, 75, 103–113. [Google Scholar] [CrossRef]
- Heinlein, S.A.; Cosgarea, A.J. Biomechanical Considerations in the Competitive Swimmer’s Shoulder. Sports Health 2010, 2, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Colwin, C. Breakthrough Swimming; Human Kinetics: Champaign, IL, USA, 2002; ISBN 978-0-7360-3777-8. [Google Scholar]
- Suzuki, Y.; Maeda, N.; Sasadai, J.; Kaneda, K.; Shirakawa, T.; Urabe, Y. Ultrasonographic Evaluation of the Shoulders and Its Associations with Shoulder Pain, Age, and Swim Training in Masters Swimmers. Medicina 2020, 57, 29. [Google Scholar] [CrossRef]
- Rodeo, S.A.; Nguyen, J.T.; Cavanaugh, J.T.; Patel, Y.; Adler, R.S. Clinical and Ultrasonographic Evaluations of the Shoulders of Elite Swimmers. Am. J. Sports Med. 2016, 44, 3214–3221. [Google Scholar] [CrossRef]
- Fernández-Galván, L.M.; Alcain Sein, J.; López-Nuevo, C.; Sánchez-Sierra, A.; Ladrián-Maestro, A.; Sánchez-Infante, J. Injury Patterns and Frequency in Swimming: A Systematic Review. Appl. Sci. 2025, 15, 1643. [Google Scholar] [CrossRef]
Participant | Weight (kg) | Height (cm) | BMI | Age (Years) | Side of Breathing |
---|---|---|---|---|---|
Overall (n = 21) | 66.43 ± 7.63 | 176.57 ± 8.44 | 21.23 ± 1.17 | 16.76 ± 1.09 | 20 Right—1 Left |
Males (n = 11) | 70.91 ± 4.78 | 181.64 ± 6.53 | 21.49 ± 0.97 | 16.73 ± 1.19 | 11 Right |
Females (n = 10) | 61.50 ± 7.25 | 171.00 ± 6.70 | 20.97 ± 1.36 | 16.80 ± 1.03 | 9 Right—1 Left |
Preferred Breathing Side | Position | Mean Day 1 | SD Day 1 | Mean Day 2 | SD Day 2 | CV (%) | TE | CIM | ICC | SEM | MDC90 | MDC% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Not | I (180°) | 77.86 | 23.36 | 77.9 | 25.08 | 30.01 | 0.04 | 0.02 | 0.9 | 7.39 | 17.19 | 22.08 |
Y (135°) | 64.39 | 22.14 | 62.27 | 18.75 | 34.39 | 2.11 | 1.06 | 0.9 | 7.0 | 16.29 | 25.3 | |
T (90°) | 57.51 | 16.9 | 58.23 | 17.01 | 29.38 | 0.72 | 0.36 | 0.9 | 5.34 | 12.43 | 21.62 | |
Yes | I (180°) | 78.52 | 21.66 | 80.37 | 26.7 | 27.58 | 1.86 | 0.93 | 0.9 | 6.85 | 15.93 | 20.29 |
Y (135°) | 64.48 | 19.4 | 66.07 | 21.62 | 30.09 | 1.59 | 0.79 | 0.9 | 6.14 | 14.28 | 22.14 | |
T (90°) | 57.47 | 14.21 | 58.5 | 16.07 | 24.73 | 1.03 | 0.52 | 0.9 | 4.49 | 10.45 | 18.19 |
Preferred Breathing Side | Position | Mean Day 1 | SD Day 1 | Mean Day 2 | SD Day 2 | CV (%) | TE | CIM | ICC | SEM | MDC90 | MDC% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Not | I (180°) | 44.79 | 14.13 | 46.05 | 14.06 | 31.55 | 1.25 | 0.63 | 0.9 | 4.47 | 10.4 | 23.21 |
Y (135°) | 46.65 | 15.14 | 46.75 | 13.68 | 32.46 | 0.1 | 0.05 | 0.9 | 4.79 | 11.14 | 23.88 | |
T (90°) | 48.38 | 14.61 | 47.98 | 13.78 | 30.21 | 0.41 | 0.2 | 0.9 | 4.62 | 10.75 | 22.22 | |
Yes | I (180°) | 46.84 | 16.32 | 48.31 | 13.76 | 34.84 | 1.48 | 0.74 | 0.9 | 5.16 | 12.0 | 25.63 |
Y (135°) | 47.13 | 14.93 | 47.53 | 13.15 | 31.69 | 0.41 | 0.2 | 0.9 | 4.72 | 10.99 | 23.31 | |
T (90°) | 49.05 | 13.89 | 48.94 | 14.02 | 28.32 | 0.11 | 0.06 | 0.9 | 4.39 | 10.22 | 20.83 |
Test | Position | Mean Preferred Side and Standard Deviation | Mean Non-Preferred Side and Standard Deviation | p-Value |
---|---|---|---|---|
Test ASH | I (180°) | 78.88 (21.77) | 77.86 (23.32) | 0.633 |
♂: 90.46 (23.46) | ♂: 89.23 (25.37) | ♂: 0.760 | ||
♀: 66.14 (9.89) | ♀: 65.35 (12.70) | ♀: 0.818 | ||
Y (135°) | 64.48 (19.34) | 64.39 (22.15) | 1 | |
♂: 75.16 (21.26) | ♂: 75.60 (24.06) | ♂: 1 | ||
♀: 52.74 (6.04) | ♀: 52.05 (11.17) | ♀: 0.625 | ||
T (90°) | 57.47 (14.00) | 56.39 (15.02) | 0.838 | |
♂: 65.86 (13.91) | ♂: 64.95 (15.83) | ♂: 0.895 | ||
♀: 48.24 (6.30) | ♀: 47.83 (6.21) | ♀: 0.625 | ||
Test IASH | I (180°) | 47.57 (16.05) | 46.72 (15.89) | 0.007 |
♂: 55.86 (17.32) | ♂: 54.65 (16.85) | ♂: 0.054 | ||
♀: 39.29 (7.12) | ♀: 38.78 (6.89) | ♀: 0.193 | ||
Y (135°) | 49.38 (13.45) | 48.72 (14.02) | 0.838 | |
♂: 56.92 (14.56) | ♂: 56.11 (15.10) | ♂: 0.705 | ||
♀: 41.84 (8.32) | ♀: 41.33 (8.05) | ♀: 0.953 | ||
T (90°) | 44.21 (12.10) | 43.67 (13.04) | 0.562 | |
♂: 51.47 (13.08) | ♂: 50.82 (13.89) | ♂: 1 | ||
♀: 36.95 (6.45) | ♀: 36.52 (6.38) | ♀: 0.625 |
Position | Mean Preferred Side and Standard Deviation | Mean Non-Preferred Side and Standard Deviation | p Value |
---|---|---|---|
I (180°) | Global: 1.732 (0.415) | Global: 1.791 (0.41) | 0.229 |
♂: 1.66 (0.32) | ♂: 1.759 (0.424) | ♂: 0.175 | |
♀: 1.81 (0.507) | ♀: 1.826 (0.413) | ♀: 0.770 | |
Y (135°) | Global: 1.396 (0.239) | Global: 1.405 (0.271) | 1.000 |
♂: 1.415 (0.252) | ♂: 1.369 (0.318) | ♂: 0.831 | |
♀: 1.376 (0.236) | ♀: 1.445 (0.219) | ♀: 0.557 | |
T (90°) | Global: 1.203 (0.241) | Global: 1.211 (0.199) | 0.320 |
♂: 1.176 (0.232) | ♂: 1.196 (0.228) | ♂: 0.240 | |
♀: 1.232 (0.26) | ♀: 1.228 (0.173) | ♀: 0.770 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogando-Berea, H.; Virgós-Abelleira, S.; Hernandez-Lucas, P.; Zarzosa-Alonso, F. Assessment of Isometric Shoulder Strength in Swimmers: A Validation and Reliability Study of the ASH and iASH Tests. J. Funct. Morphol. Kinesiol. 2025, 10, 92. https://doi.org/10.3390/jfmk10010092
Ogando-Berea H, Virgós-Abelleira S, Hernandez-Lucas P, Zarzosa-Alonso F. Assessment of Isometric Shoulder Strength in Swimmers: A Validation and Reliability Study of the ASH and iASH Tests. Journal of Functional Morphology and Kinesiology. 2025; 10(1):92. https://doi.org/10.3390/jfmk10010092
Chicago/Turabian StyleOgando-Berea, Hugo, Santiago Virgós-Abelleira, Pablo Hernandez-Lucas, and Fernando Zarzosa-Alonso. 2025. "Assessment of Isometric Shoulder Strength in Swimmers: A Validation and Reliability Study of the ASH and iASH Tests" Journal of Functional Morphology and Kinesiology 10, no. 1: 92. https://doi.org/10.3390/jfmk10010092
APA StyleOgando-Berea, H., Virgós-Abelleira, S., Hernandez-Lucas, P., & Zarzosa-Alonso, F. (2025). Assessment of Isometric Shoulder Strength in Swimmers: A Validation and Reliability Study of the ASH and iASH Tests. Journal of Functional Morphology and Kinesiology, 10(1), 92. https://doi.org/10.3390/jfmk10010092