Classification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (LIBS) with Comparison Machine Learning Algorithms
Abstract
1. Introduction
2. Experimental Procedure
2.1. Sample Preparation
2.2. ML Methods for LIBS
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, K.; Qiu, C.; Tian, D.; Yang, G.; Li, Y.; Han, X. Laser-Induced Breakdown Spectroscopy for Plastic Classification. Spectrosc. Spectr. Anal. 2017, 37, 3600–3605. [Google Scholar]
- Godoi, Q.; Leme, F.O.; Trevizan, L.C.; Pereira Filho, E.R.; Rufini, I.A.; Santos, D., Jr.; Krug, F.J. Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 138–143. [Google Scholar] [CrossRef]
- Wang, W.; Sun, L.; Lu, Y.; Qi, L.; Wang, W.; Qiao, H. Laser induced breakdown spectroscopy online monitoring of laser cleaning quality on carbon fiber reinforced plastic. Opt. Laser Technol. 2022, 145, 107481. [Google Scholar] [CrossRef]
- Brunnbauer, L.; Larisegger, S.; Lohninger, H.; Nelhiebel, M.; Limbeck, A. Spatially resolved polymer classification using laser induced breakdown spectroscopy (LIBS) and multivariate statistics. Talanta 2020, 209, 120572. [Google Scholar] [CrossRef]
- Costa, V.C.; Aquino, F.W.B.; Paranhos, C.M.; Pereira-Filho, E.R. Identification and classification of polymer e-waste using laser-induced breakdown spectroscopy (LIBS) and chemometric tools. Polym. Test. 2017, 59, 390–395. [Google Scholar] [CrossRef]
- Anzano, J.; Bonilla, B.; Montull-Ibor, B.; Lasheras, R.-J.; Casas-Gonzalez, J. Classifications of Plastic Polymers based on Spectral Data Analysis with leaser induced Breakdown Spectroscopy. J. Polym. Eng. 2010, 30, 177–188. [Google Scholar] [CrossRef]
- Xu, L.; Liang, L.; Zhang, T.; Tang, H.; Wang, K.; Li, H. A method of improving classification precision based on model population analysis of steel material for laser-induced breakdown spectroscopy. Anal. Methods 2014, 6, 8374–8379. [Google Scholar] [CrossRef]
- Jull, H.; Bier, J.; Künnemeyer, R.; Schaare, P. Classification of recyclables using laser-induced breakdown spectroscopy for waste management. Spectrosc. Lett. 2018, 51, 257–265. [Google Scholar] [CrossRef]
- Junjuri, R.; Zhang, C.; Barman, I.; Gundawar, M.K. Identification of post-consumer plastics using laser-induced breakdown spectroscopy. Polym. Test. 2019, 76, 101–108. [Google Scholar] [CrossRef]
- Guo, Y.; Tang, Y.; Du, Y.; Tang, S.; Guo, L.; Li, X.; Lu, Y.; Zeng, X. Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means. Plasma Sci. Technol. 2018, 20, 065505. [Google Scholar] [CrossRef]
- Stefas, D.; Gyftokostas, N.; Bellou, E.; Couris, S. Laser-Induced Breakdown Spectroscopy Assisted by Machine Learning for Plastics/Polymers Identification. Atoms 2019, 7, 79. [Google Scholar] [CrossRef]
- Gajarska, Z.; Brunnbauer, L.; Lohninger, H.; Limbeck, A. Identification of 20 polymer types by means of laser-induced breakdown spectroscopy (LIBS) and chemometrics. Anal. Bioanal. Chem. 2021, 413, 6581–6594. [Google Scholar] [CrossRef]
- Zeng, Q.; Sirven, J.-B.; Gabriel, J.-C.P.; Tay, C.Y.; Lee, J.-M. Laser induced breakdown spectroscopy for plastic analysis. TrAC Trends Anal. Chem. 2021, 140, 116280. [Google Scholar] [CrossRef]
- Tang, Y.; Guo, Y.; Sun, Q.; Tang, S.; Li, J.; Guo, L.; Duan, J. Industrial polymers classification using laser-induced breakdown spectroscopy combined with self-organizing maps and K-means algorithm. Optik 2018, 165, 179–185. [Google Scholar] [CrossRef]
- Dastjerdi, M.V.; Mousavi, S.J.; Soltanolkotabi, M.; Zadeh, A.N. Identification and Sorting of PVC Polymer in Recycling Process by Laser-Induced Breakdown Spectroscopy (LIBS) Combined with Support Vector Machine (SVM) Model. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 959–965. [Google Scholar] [CrossRef]
- Hussain, L. Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach. Cogn. Neurodyn. 2018, 12, 271–294. [Google Scholar] [CrossRef]
- Wahab, A.H.B.A.; Zahari, R.; Lim, T.H. Detecting diseases in Chilli Plants Using K-Means Segmented Support Vector Machine. In Proceedings of the 2019 3rd International Conference on Imaging, Signal Processing and Communication (ICISPC), Singapore, 27–29 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 57–61. [Google Scholar] [CrossRef]
- Joshi, S.; Joshi, F. Human Emotion Classification based on EEG Signals Using Recurrent Neural Network And KNN. arXiv 2022, arXiv:2205.08419. [Google Scholar]
- Santhiya, R.; GeethaPriya, C. Machine Learning Techniques for Intelligent Transportation Systems-An overview. In Proceedings of the 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 6–8 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7. [Google Scholar]
- Rathore, D.S.; Ram, B.; Pal, B.L.; Malviya, S. Analysis of classification algorithms for insect detection using MATLAB. In Proceedings of the 2nd International Conference on Advanced Computing and Software Engineering (ICACSE), Sultanpur, India, 8–9 February 2019. [Google Scholar]
- Zhang, D.; Zhang, H.; Zhao, Y.; Chen, Y.; Ke, C.; Xu, T.; He, Y. A brief review of new data analysis methods of laser-induced breakdown spectroscopy: Machine learning. Appl. Spectrosc. Rev. 2022, 57, 89–111. [Google Scholar] [CrossRef]
- Dong, R.; Wang, J.; Weng, S.; Yuan, H.; Yang, L. Field determination of hazardous chemicals in public security by using a hand-held Raman spectrometer and a deep architecture-search network. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 258, 119871. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.; Cheng, X.; Zhang, T.; Wang, X.; He, B.; Zhang, W.; Feng, Y.; Bai, J.; Li, H. Novel Method Based on Hollow Laser Trapping-LIBS-Machine Learning for Simultaneous Quantitative Analysis of Multiple Metal Elements in a Single Microsized Particle in Air. Anal. Chem. 2021, 93, 2281–2290. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, T.; Li, H. Applications of laser-induced breakdown spectroscopy (LIBS) combined with machine learning in geochemical and environmental resources exploration. TrAC Trends Anal. Chem. 2020, 133, 116113. [Google Scholar] [CrossRef]
- Syazwani, R.W.N.; Asraf, H.M.; Amin, M.M.S.; Dalila, K.N. Automated image identification, detection and fruit counting of top-view pineapple crown using machine learning. Alex. Eng. J. 2022, 61, 1265–1276. [Google Scholar] [CrossRef]
- Seyidbayli, C.; Salhi, F.; Akdogan, E. Comparison of machine learning algorithms for EMG signal classification. Period. Eng. Nat. Sci. (PEN) 2020, 8, 1165–1176. [Google Scholar]
- Syed, S.A.; Rashid, M.; Hussain, S.; Imtiaz, A.; Abid, H.; Zahid, H. Inter classifier comparison to detect voice pathologies. Math. Biosci. Eng. 2021, 18, 2258–2273. [Google Scholar] [CrossRef] [PubMed]
- Arslan, H.; Orhan, E.R. A Comparative Study on COVID-19 Prediction Using Deep Learning and Machine Learning Algorithms: A Case Study on Performance Analysis. Sak. Univ. J. Comput. Inf. Sci. 2022, 5, 71–83. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yılmaz, V.S.; Eseller, K.E.; Aslan, O.; Bayraktar, E. Classification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (LIBS) with Comparison Machine Learning Algorithms. Inventions 2023, 8, 54. https://doi.org/10.3390/inventions8020054
Yılmaz VS, Eseller KE, Aslan O, Bayraktar E. Classification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (LIBS) with Comparison Machine Learning Algorithms. Inventions. 2023; 8(2):54. https://doi.org/10.3390/inventions8020054
Chicago/Turabian StyleYılmaz, Vadi Su, Kemal Efe Eseller, Ozgur Aslan, and Emin Bayraktar. 2023. "Classification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (LIBS) with Comparison Machine Learning Algorithms" Inventions 8, no. 2: 54. https://doi.org/10.3390/inventions8020054
APA StyleYılmaz, V. S., Eseller, K. E., Aslan, O., & Bayraktar, E. (2023). Classification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (LIBS) with Comparison Machine Learning Algorithms. Inventions, 8(2), 54. https://doi.org/10.3390/inventions8020054