Narrowband Filters Designed from Hybrid One-Dimensional Periodic/Quasiperiodic Photonic Crystals with a Single Defect Layer
Abstract
1. Introduction
2. Description of the System
2.1. Theoretical Framework
2.2. Simulation Settings
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Qiao, F.; Wan, J. Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures. J. Appl. Phys. 2000, 87, 3174. [Google Scholar] [CrossRef]
- Kanzari, M.; Rezig, B. Optical polychromatic filter by the combination of periodic and quasi-periodic one-dimensional, dielectric photonic bandgap structures. J. Opt. A Pure Appl. Opt. 2001, 3, S201. [Google Scholar] [CrossRef]
- Peng, R.W.; Huang, X.Q.; Qiu, F.; Wang, M.; Hu, A.; Jiang, S.S.; Mazzer, M. Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers. Appl. Phys. Lett. 2002, 80, 3063. [Google Scholar] [CrossRef]
- Wen, D.J.; Peng, H.; Zhou, W.H. Broad Omnidirectional Reflection Band Forming using the Combination of Fibonacci Quasi-Periodic and Periodic One-Dimensional Photonic Crystals. Chin. Phys. Lett. 2003, 20, 1963. [Google Scholar] [CrossRef]
- Peng, R.W.; Liu, Y.M.; Huang, X.Q.; Qiu, F.; Wang, M.; Hu, A.; Jiang, S.S.; Feng, D.; Ouyang, L.Z.; Zou, J. Dimerlike positional correlation and resonant transmission of electromagnetic waves in aperiodic dielectric multilayers. Phys. Rev. B 2004, 69, 165109. [Google Scholar] [CrossRef]
- Maciá Barber, E. Aperiodic Structures in Condensed Matter. Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Maciá, E. Exploiting aperiodic designs in nanophotonic devices. Rep. Prog. Phys. 2012, 75, 036502. [Google Scholar] [CrossRef]
- Maciá, E. Exploiting quasiperiodic order in the design of optical devices. Phys. Rev. B 2001, 63, 205421. [Google Scholar] [CrossRef]
- Vardeny, Z.; Nahata, A.; Agrawal, A. Optics of photonic quasicrystals. Nat. Photon. 2013, 7, 177. [Google Scholar] [CrossRef]
- Escorcia-García, J.; Mora-Ramos, M.E. Study of optical propagation in hybrid periodic/quasiregular structures based on porous silicon. PIERS Online 2009, 5, 36. [Google Scholar] [CrossRef]
- Ben Ali, N.; Kanzari, M. Designing of omni-directional high reflectors by using one-dimensional modified hybrid Fibonacci/Cantor band-gap structures at optical telecommunication wavelength band. J. Mod. Opt. 2010, 57, 287. [Google Scholar] [CrossRef]
- Escorcia-García, J.; Duque, C.A.; Mora-Ramos, M.E. Optical properties of hybrid periodic/quasiregular dielectric multilayers. Superlattice Microstruct. 2011, 40, 203. [Google Scholar] [CrossRef]
- Ben Ali, N.; Kanzari, M. Designing of stop band filters using hybrid periodic/quasi-periodic one-dimensional photonic crystals in microwave domain. Phys. Status Solidi A 2011, 208, 161. [Google Scholar] [CrossRef]
- Zaghdoudi, J.; Maaloul, N.; Kanzari, M. Studies of optical properties of symmetrical quasi-periodic photonic crystals. Opt. Photon. J. 2012, 2, 270. [Google Scholar] [CrossRef]
- Bouazzi, Y.; Kanzari, M. Optical Fabry–Perot filter based on photonic band gap quasi-periodic one-dimensional multilayer according to the definite Rudin–Shapiro distribution. Opt. Commun. 2012, 285, 2774. [Google Scholar] [CrossRef]
- Escorcia-García, J.; Mora-Ramos, M.E. Propagation and confinement of electric field waves along one-dimensional porous silicon hybrid periodic/quasiperiodic structure. Opt. Photon. J. 2013, 3, 1. [Google Scholar] [CrossRef]
- Baraket, Z.; Zaghdoudi, J.; Kanzari, M. Study of optical responses in hybrid symmetrical quasi-periodic photonic crystals. Prog. Electromagn. Res. M 2016, 46, 29. [Google Scholar] [CrossRef]
- Asmi, R.; Ben Ali, N.; Kanzari, M. Enhancement of light localization in hybrid Thue–Morse/Periodic Photonic crystals. J. Mater. 2016, 2016, 9471312. [Google Scholar] [CrossRef]
- Trabelsi, Y.; Bouazzi, Y.; Benali, N.; Kanzari, M. Narrow stop band optical filter using one-dimensional regular Fibonacci/Rudin Shapiro photonic quasicrystals. Opt. Quant. Electron. 2016, 48, 54. [Google Scholar] [CrossRef]
- Vyunishev, A.; Pankin, P.; Svyakhovskiy, S.; Timofeev, I.; Vetrov, S. Quasiperiodic one-dimensional photonic crystals with adjustable multiple photonic bandgaps. Opt. Lett. 2017, 42, 3602. [Google Scholar] [CrossRef]
- Elsayed, H.A.; Sharma, A.; Segovia-Chaves, F.; Sabra, W. Multi passbands filter for THz applications based on the one-dimensional photonic crystals heterostructure. Optik 2021, 248, 168056. [Google Scholar] [CrossRef]
- Trabelsi, Y.; Belhadj, W.; Ben Ali, N.; Aly, A.H. Theoretical Study of Tunable Optical Resonators in Periodic and Quasiperiodic One-Dimensional Photonic Structures Incorporating a Nematic Liquid Crystal. Photonics 2021, 8, 150. [Google Scholar] [CrossRef]
- Segovia-Chaves, F.; Vinck-Posada, H. Tunability of multiple transmission channels in quasiperiodic one-dimensional photonic crystals. Rom. J. Phys. 2022, 67, 201. [Google Scholar]
- Sreekanth, K.V.; Zeng, S.; Yong, K.-T.; Yu, T. Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal. Sens. Actuators B Chem. 2013, 182, 424. [Google Scholar] [CrossRef]
- Aly, A.H.; Mohamed, D.; Mohaseb, M.A.; Abd El-Gawaad, N.S.; Trabelsi, Y. Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv. 2020, 10, 31765. [Google Scholar] [CrossRef] [PubMed]
- Nouman, W.M.; Abd El-Ghany, S.E.S.; Sallam, S.M.; Dawood, A.-F.B.; Aly, A.H. Biophotonic sensor for rapid detection of brain lesions using 1D photonic crystal. Opt. Quant. Electron. 2020, 52, 287. [Google Scholar] [CrossRef]
- Aly, A.H.; Zaky, Z.A.; Shalaby, A.S.; Ahmed, A.M.; Vigneswaran, D. Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. Phys. Scr. 2020, 95, 035510. [Google Scholar] [CrossRef]
- Surdo, S.; Barillaro, G. Impact of Fabrication and Bioassay Surface Roughness on the Performance of Label-Free Resonant Biosensors Based on One-Dimensional Photonic Crystal Microcavities. ACS Sens. 2020, 5, 2894. [Google Scholar] [CrossRef]
- Panda, A.; Pukhrambam, P.D.; Ayyanar, N.; Nguyen, T.K. Investigation of transmission properties in defective one dimensional superconductive photonic crystal for ultralow level bioethanol detection. Optik 2021, 245, 167733. [Google Scholar] [CrossRef]
- Shalaby, A.S.; Alamri, S.; Mohamed, D.; Aly, A.H.; Awasthi, S.K.; Matar, Z.S.; Tammam, M.T. Theoretical study of one-dimensional defect photonic crystal as a high-performance sensor for water-borne bacteria. Opt. Quant. Electron. 2021, 53, 660. [Google Scholar] [CrossRef]
- Zaky, Z.A.; Moustafa, B.; Aly, A.H. Plasma cell sensor using photonic crystal cavity. Opt. Quant. Electron. 2021, 53, 591. [Google Scholar] [CrossRef]
- Zaky, Z.A.; Sharma, A.; Alamri, S.; Aly, A.H. Theoretical evaluation of the refractive index sensing capability using the coupling of Tamm–Fano resonance in one-dimensional photonic crystals. Appl. Nanosci. 2021, 11, 2261. [Google Scholar] [CrossRef]
- Malek, C.; Al-Dossari, M.; Awasthi, S.K.; Matar, Z.S.; Abd El-Gawaad, N.S.; Sabra, W.; Aly, A.H. Employing the Defective Photonic Crystal Composed of Nanocomposite Superconducting Material in Detection of Cancerous Brain Tumors Biosensor: Computational Study. Crystals 2022, 12, 540. [Google Scholar] [CrossRef]
- Matar, Z.S.; Al-Dossari, M.; Awasthi, S.K.; Mohamed, D.; Abd El-Gawaad, N.S.; Aly, A.H. Conventional Biophotonic Sensing Approach for Sensing and Detection of Normal and Infected Samples Containing Different Blood Components. Crystals 2022, 12, 650. [Google Scholar] [CrossRef]
- Taya, S.A.; Alhamss, D.N.; Colak, I.; Patel, S.K. Sensitivity enhancement of an optical sensor based on a binary photonic crystal for the detection of Escherichia coli by controlling the central wavelength and the angle of incidence. Opt. Quant. Electron. 2022, 54, 127. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. 1965, 55, 1205–1209. [Google Scholar] [CrossRef]
- DeVore, J.R. Refractive Indices of Rutile and Sphalerite. J. Opt. Soc. Am. 1951, 41, 416–419. [Google Scholar] [CrossRef]
- Wood, D.L.; Nassau, K. Refractive index of cubic zirconia stabilized with yttria. Appl. Opt. 1982, 21, 2978–2981. [Google Scholar] [CrossRef]
- COMSOL Multiphysics, v. 5.6, COMSOL AB: Stockholm, Sweden, 2021.
- COMSOL Multiphysics Reference Guide; COMSOL AB: Stockholm, Sweden, 2012.
- COMSOL Multiphysics Users Guide; COMSOL AB: Stockholm, Sweden, 2012.
- Waikar, S.S.; Betensky, R.A.; Bonventre, J.V. Creatinine as the gold standard for kidney injury biomarker studies. Nephrol. Dial. Transplant. 2009, 24, 3263. [Google Scholar] [CrossRef]
- Parvesh, M.; Ohlsson, P.; BjOrkhem, I. Combined enzymic- Jaffe method for determination of creatinine in serum. Clin. Chem. 1981, 27, 8–21. [Google Scholar]
- Awad, M.A.; Aly, A.H. Experimental and theoretical studies of hybrid multifunctional TiO2/TiN/TiO2. Ceram. Int. 2015, 45, 19036–19043. [Google Scholar] [CrossRef]
- ElBeheiry, M.; Liu, V.; Fan, S.; Levi, O. Sensitivity enhancement in photonic crystal slab biosensors. Opt. Express 2010, 18, 22702–22714. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Li, C.; Wang, C.; Ji, Y.; Quan, Q. High figure of merit fano resonance in 2-D defect-free pillar array photonic crystal for refractive index sensing. IEEE Photonics J. 2016, 8, 4502414. [Google Scholar] [CrossRef]
- Gandhi, S.; Awasthi, S.K.; Aly, A.H. Biophotonic sensor design using a 1D defective annular photonic crystal for the detection of creatinine concentration in blood serum. RSC Adv. 2021, 11, 26655–26665. [Google Scholar] [CrossRef] [PubMed]
n | Creatinine Concentration (μmolL) |
---|---|
2.661 | 80.9 |
2.655 | 81.43 |
2.639 | 82.3 |
2.610 | 83.3 |
2.589 | 84.07 |
2.565 | 85.28 |
n | (μm) | Q | FOM × 10 (RIU) |
---|---|---|---|
2.661 | 0.92469 | 2.1 | 2.6 |
2.655 | 0.92283 | 1.9 | 2.4 |
2.639 | 0.92204 | 1.4 | 1.8 |
2.610 | 0.91857 | 1.7 | 2.2 |
2.589 | 0.91607 | 1.8 | 1.4 |
2.565 | 0.91324 | 1.5 | 2.0 |
S (nm/RIU) | FOM (RIU) | LOD (RIU ) | Ref. |
---|---|---|---|
306.25 | (1.5–10.3) | 1.04 | [25] |
637–640.3 | (1.96–2.6) | (1.9–2.6) | [47] |
119.4 | ( 19.7–26.47) | (0.19–0.25) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murillo-García, W.; Gómez-Urrea, H.A.; Mora-Ramos, M.E.; Duque, C.A. Narrowband Filters Designed from Hybrid One-Dimensional Periodic/Quasiperiodic Photonic Crystals with a Single Defect Layer. Condens. Matter 2023, 8, 50. https://doi.org/10.3390/condmat8020050
Murillo-García W, Gómez-Urrea HA, Mora-Ramos ME, Duque CA. Narrowband Filters Designed from Hybrid One-Dimensional Periodic/Quasiperiodic Photonic Crystals with a Single Defect Layer. Condensed Matter. 2023; 8(2):50. https://doi.org/10.3390/condmat8020050
Chicago/Turabian StyleMurillo-García, Waira, Hernán A. Gómez-Urrea, Miguel E. Mora-Ramos, and Carlos A. Duque. 2023. "Narrowband Filters Designed from Hybrid One-Dimensional Periodic/Quasiperiodic Photonic Crystals with a Single Defect Layer" Condensed Matter 8, no. 2: 50. https://doi.org/10.3390/condmat8020050
APA StyleMurillo-García, W., Gómez-Urrea, H. A., Mora-Ramos, M. E., & Duque, C. A. (2023). Narrowband Filters Designed from Hybrid One-Dimensional Periodic/Quasiperiodic Photonic Crystals with a Single Defect Layer. Condensed Matter, 8(2), 50. https://doi.org/10.3390/condmat8020050