#
Atomic Structure of Mn-Doped CoFe_{2}O_{4} Nanoparticles for Metal–Air Battery Applications

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{9}

^{10}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Synthesis, Characterizations, and HE-XRD Experiments

## 3. Reverse Monte Carlo Analysis and Results

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Yin, J.; Shen, L.; Li, Y.; Lu, M.; Sun, K.; Xi, P. CoFe
_{2}O_{4}nanoparticles as efficient bifunctional catalysts applied in Zn–air battery. J. Mater. Res.**2018**, 33, 590–600. [Google Scholar] [CrossRef] - Park, J.W.; Ju, Y.W. Evaluation of Bi-Functional Electrochemical Catalytic Activity of Co
_{3}O_{4}-CoFe_{2}O_{4}Composite Spinel Oxide. Energies**2023**, 16, 173. [Google Scholar] [CrossRef] - Jia, Q.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E.F.; Zelenay, P.; et al. Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano
**2015**, 9, 12496–12505. [Google Scholar] [CrossRef] - Nematollahi, P.; Barbiellini, B.; Bansil, A.; Lamoen, D.; Qingying, J.; Mukerjee, S.; Neyts, E.C. Identification of a Robust and Durable FeN4Cx Catalyst for ORR in PEM Fuel Cells and the Role of the Fifth Ligand. ACS Catal.
**2022**, 12, 7541–7549. [Google Scholar] [CrossRef] - Hou, Y.; Yan, X.; Huang, Y.; Zheng, S.; Hou, S.; Ouyang, Y. Structural, electronic and magnetic properties of manganese substituted CoFe2O4: A first-principles study. J. Magn. Magn. Mater.
**2020**, 495, 165862. [Google Scholar] [CrossRef] - Sharma, K.; Calmels, L.; Li, D.; Barbier, A.; Arras, R. Influence of the cation distribution, atomic substitution, and atomic vacancies on the physical properties of CoFe
_{2}O_{4}and NiFe_{2}O_{4}spinel ferrites. Phys. Rev. Mater.**2022**, 6, 124402. [Google Scholar] [CrossRef] - Dileep, K.; Loukya, B.; Pachauri, N.; Gupta, A.; Datta, R. Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial films by high resolution electron energy loss spectroscopy. J. Appl. Phys.
**2014**, 116, 103505. [Google Scholar] [CrossRef] - Kohara, S.; Itou, M.; Suzuya, K.; Inamura, Y.; Sakurai, Y.; Ohishi, Y.; Takata, M. Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions. J. Phys. Condens. Matter
**2007**, 19, 506101. [Google Scholar] [CrossRef] - Ohara, K.; Onodera, Y.; Murakami, M.; Kohara, S. Structure of disordered materials under ambient to extreme conditions revealed by synchrotron X-ray diffraction techniques at SPring-8—Recent instrumentation and synergic collaboration with modelling and topological analyses. J. Phys. Condens. Matter
**2021**, 33, 383001. [Google Scholar] [CrossRef] - FIJI. Available online: https://imagej.net/software/fiji/ (accessed on 17 March 2023).
- Billinge, S.J. The rise of the X-ray atomic pair distribution function method: A series of fortunate events. Philos. Trans. R. Soc. A
**2019**, 377, 20180413. [Google Scholar] [CrossRef] - Faber, T.E.; Ziman, J.M. A theory of the electrical properties of liquid metals. Philos. Mag. A J. Theor. Exp. Appl. Phys.
**1965**, 11, 153–173. [Google Scholar] [CrossRef] - Harada, M.; Ikegami, R.; Kumara, L.S.R.; Kohara, S.; Sakata, O. Reverse Monte Carlo modeling for local structures of noble metal nanoparticles using high-energy XRD and EXAFS. RSC Adv.
**2019**, 9, 29511–29521. [Google Scholar] [CrossRef] - Warren, B. X-ray Diffraction; Dover Publications, Inc.: New York, NY, USA, 1969. [Google Scholar]
- Egami, T.; Billinge, S. Underneath the Bragg Peaks: Structural Analysis of Complex Materials; Pergamon Press: Oxford, UK, 2003. [Google Scholar]
- Billinge, S.J.L.; Levin, I. The problem with determining atomic structure at the nanoscale. Science
**2007**, 316, 561. [Google Scholar] [CrossRef] - Pradhan, S.K.; Deng, Z.T.; Tang, F.; Wang, C.; Ren, Y.; Moeck, P.; Petkov, V. Three-dimensional structure of Cd X (X = Se, Te) nanocrystals by total x-ray diffraction. J. Appl. Phys.
**2007**, 102, 044304. [Google Scholar] [CrossRef] - Fernańdez-García, M.; Belver, C.; Hanson, J.C.; Wang, X.; Rodriguez, J.A. Anatase-TiO
_{2}nanomaterials: Analysis of Key Parameters Controlling Crystallization. J. Am. Chem. Soc.**2007**, 129, 13604–13612. [Google Scholar] [CrossRef] - Petkov, V. Nanostructure by high-energy X-ray diffraction. Mater. Today
**2008**, 11, 28. [Google Scholar] [CrossRef] - Bŏzin, E.S.; Malliakas, C.D.; Souvatzis, P.; Profferì, T.; Spaldin, N.A.; Kanatzidis, M.G.; Billinge, S.L. Entropically Stabilized Local Dipole Formation in Lead Chalcogenides. Science
**2010**, 330, 1660–1663. [Google Scholar] [CrossRef] - Jensen, K.M.Ø.; Bŏzin, E.S.; Malliakas, C.D.; Stone, M.B.; Lumsden, M.D.; Kanatzidis, M.G.; Shapiro, S.M.; Billinge, S.J.L. Lattice Dynamics Reveals a Local Symmetry Breaking in the Emergent Dipole Phase of PbTe. Phys. Rev.
**2012**, B86, 085313. [Google Scholar] [CrossRef] - Keen, D.A.; Goodwin, A.L. The crystallography of correlated disorder. Nature
**2015**, 521, 303. [Google Scholar] [CrossRef] - Deepak, F.L.; Bañobre-López, M.; Carbó-Argibay, E.; Cerqueira, M.F.; Piñeiro-Redondo, Y.; Rivas, J.; Thompson, C.M.; Kamali, S.; Rodríguez-Abreu, C.; Kovnir, K.; et al. A systematic study of the structural and magnetic properties of Mn-, Co-, and Ni-doped colloidal magnetite nanoparticles. J. Phys. Chem. C
**2015**, 119, 11947–11957. [Google Scholar] [CrossRef] - Mancini, A.; Malavasi, L. Recent advances in the application of total scattering methods to functional materials. Chem. Commun.
**2015**, 51, 16592. [Google Scholar] [CrossRef] [PubMed] - Jensen, K.M.Ø.; Blichfeld, A.B.; Bauers, S.R.; Wood, S.R.; Dooryhee, E.; Johnson, D.C.; Iversen, B.B.; Billinge, S.J.L. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films. IUCrJ
**2015**, 2, 481–489. [Google Scholar] [CrossRef] [PubMed] - Jensen, K.M.; Juhas, P.; Tofanelli, M.A.; Heinecke, C.L.; Vaughan, G.; Ackerson, C.J.; Billinge, S.J. Polymorphism in magic-sized Au144 (SR) 60 clusters. Nat. Commun.
**2016**, 7, 11859. [Google Scholar] [CrossRef] [PubMed] - Dippel, A.C.; Jensen, K.M.Ø.; Tyrsted, C.; Bremholm, M.; Bøjesen, E.D.; Saha, D.; Birgisson, S.; Christensen, M.; Billinge, S.J.L.; Iversen, B.B. Towards atomistic understanding of polymorphism in the solvothermal synthesis of ZrO
_{2}nanoparticles. Acta Cryst.**2016**, A72, 645–650. [Google Scholar] - Dippel, A.C.; Roelsgaard, M.; Boettger, U.; Schneller, T.; Gutowski, O.; Ruett, U. Local atomic structure of thin and ultrathin films via rapid high-energy X-ray total scattering at grazing incidence. IUCrJ
**2019**, 6, 290–298. [Google Scholar] [CrossRef] - Mathiesen, M.K.; Väli, R.; Härmas, M.; Lust, E.; Bulow, J.F.; Jensen, K.M.Ø.; Norby, P. Following the in-plane disorder of sodiated hard carbon through operando total scattering. J. Mater. Chem. A
**2019**, 7, 11709. [Google Scholar] [CrossRef] - Christiansen, T.L.; Bøjesen, E.D.; Juelsholt, M.; Etheridge, J.; Jensen, K.M.Ø. Size induced structural changes in molybdenum oxide nanoparticles. ACS Nano
**2019**, 13, 8725–8735. [Google Scholar] [CrossRef] - Banerjee, S.; Liu, C.H.; Jensen, K.M.Ø.; Juhas, P.; Lee, J.D.; Tofanelli, M.; Ackerson, C.J.; Murray, C.B.; Billinge, S.J.L. Cluster-mining: An approach for determining core structures of metallic nanoparticles from atomic pair distribution function data. Acta Cryst.
**2020**, A76, 24–31. [Google Scholar] [CrossRef] - Christiansen, T.L.; Cooper, S.R.; Jensen, K.M.Ø. Thereś no place like real-space: Elucidating size-dependent atomic structure of nanomaterials using pair distribution function analysis. Nanoscale Adv.
**2020**, 2, 2234–2254. [Google Scholar] [CrossRef] - Pussi, K.; Gallo, J.; Ohara, K.; Carb-Argibay, E.; Kolen’ko, Y.V.; Barbiellini, B.; Bansil, A.; Kamali, S. Structure of Manganese Oxide Nanoparticles Extracted via Pair Distribution Functions. Condens. Matter
**2020**, 5, 19. [Google Scholar] [CrossRef] - Pussi, K.; Barbiellini, B.; Ohara, K.; Carbo-Argibay, E.; Kolen’ko, Y.V.; Bansil, A.; Kamali, S. Structural properties of PbTe quantum dots revealed by high-energy x-ray diffraction. J. Phys. Condens. Matter
**2020**, 32, 485401. [Google Scholar] [CrossRef] [PubMed] - Tiano, A.L.; Papaefthymiou, G.C.; Lewis, C.S.; Han, J.; Zhang, C.; Li, Q.; Shi, C.; Abeykoon, A.M.; Billinge, S.J.; Stach, E.; et al. Correlating size and composition-dependent effects with magnetic, mossbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles. Chem. Mater.
**2015**, 27, 3572. [Google Scholar] [CrossRef] - Michel, F.; Ehm, L.; Liu, G.; Han, W.; Antao, S.; Chupas, P.; Lee, P.; Knorr, K.; Eulert, H.; Kim, J.; et al. Similarities in 2-and 6-line ferrihydrite based on pair distribution function analysis of X-ray total scattering. Chem. Mater.
**2007**, 19, 1489–1496. [Google Scholar] [CrossRef] - Mcgreevy, R. Reverse Monte Carlo modelling. J. Phys. Condens. Matter
**2001**, 13, R877. [Google Scholar] [CrossRef] - Pussi, K.; Barbiellini, B.; Ohara, K.; Yamada, H.; Dwivedi, J.; Bansil, A.; Gupta, A.; Kamali, S. Atomic arrangements in an amorphous CoFeB ribbon extracted via an analysis of radial distribution functions. J. Phys. Condens. Matter
**2021**, 33, 395801. [Google Scholar] [CrossRef] [PubMed] - Pussi, K.; Louzguine-Luzgin, D.; Nokelaineni, J.; Barbiellini, B.; Kothalawala, V.; Ohara, K.; Yamada, H.; Bansil, A.; Kamali, S. Atomic structure of an FeCrMoCBY metallic glass revealed by high energy x-ray diffraction. J. Phys. Condens. Matter
**2022**, 34, 285301. [Google Scholar] [CrossRef] - Erba, A.; Baima, J.; Bush, I.; Orlando, R.; Dovesi, R. Large-Scale Condensed Matter DFT Simulations: Performance and Capabilities of the CRYSTAL Code. J. Chem. Theory Comput.
**2017**, 13, 5019–5027. [Google Scholar] [CrossRef] - Tucker, M.G.; Keen, D.A.; Dove, M.T.; Goodwin, A.L.; Hui, Q. RMCProfile: Reverse Monte Carlo for polycrystalline materials. J. Phys. Condens. Matter
**2007**, 19, 335218. [Google Scholar] [CrossRef] - Sanna Angotzi, M.; Mameli, V.; Zakutna, D.; Kubaniova, D.; Cara, C.; Cannas, C. Evolution of the Magnetic and Structural Properties with the Chemical Composition in Oleate-Capped Mn x Co1–x Fe
_{2}O_{4}Nanoparticles. J. Phys. Chem. C**2021**, 125, 20626–20638. [Google Scholar] [CrossRef] - Rushiti, A.; Hättig, C. Activation of Molecular O
_{2}on CoFe_{2}O_{4}(001) Surfaces: An Embedded Cluster Study. Chem. Eur. J.**2021**, 27, 17115–17126. [Google Scholar] [CrossRef] - Pussi, K.; Barbiellini, B.; Ohara, K.; Yamada, H.; Carbo-Argibay, E.; Sousa, V.; Kolen’ko, Y.V.; Bansil, A.; Kamali, S. Structural Properties of Nanometer-Sized Gold Nanoparticles on a Silicon Substrate. Phys. Status Solidi (B)
**2022**, 259, 2100572. [Google Scholar] [CrossRef] - Dima, D.; Andrei, G. Interaction between ferrite particles and oxygen molecules within the polyester matrix of lightweight magnetic composites. Rom. J. Phys.
**2004**, 49, 795–806. [Google Scholar] - Barbiellini, B.; Platzman, P. The healing mechanism for excited molecules near metallic surfaces. New J. Phys.
**2006**, 8, 20. [Google Scholar] [CrossRef]

**Figure 1.**HR-TEM images for all investigated samples: (

**a**) ${\mathrm{CoFe}}_{2}{\mathrm{O}}_{4}$, (

**b**) ${\mathrm{Co}}_{0.75}{\mathrm{Mn}}_{0.25}{\mathrm{Fe}}_{2}{\mathrm{O}}_{4}$, (

**c**) ${\mathrm{Co}}_{0.50}{\mathrm{Mn}}_{0.50}{\mathrm{Fe}}_{2}{\mathrm{O}}_{4}$, (

**d**) ${\mathrm{Co}}_{0.25}{\mathrm{Mn}}_{0.75}{\mathrm{Fe}}_{2}{\mathrm{O}}_{4}$, (

**e**) ${\mathrm{MnFe}}_{2}{\mathrm{O}}_{4}$.

**Figure 2.**Experimental $G\left(r\right)$ data for all investigated samples. The top panel highlights the short-distance region.

**Figure 4.**Partial PDFs corresponding to the fits in Figure 3.

**Figure 5.**Optimized structures of all investigated samples. (

**a**) ${\mathrm{CoFe}}_{2}{\mathrm{O}}_{4}$, (

**b**) ${\mathrm{Co}}_{0.75}{\mathrm{Mn}}_{0.25}{\mathrm{Fe}}_{2}{\mathrm{O}}_{4}$, (

**c**) ${\mathrm{Co}}_{0.50}{\mathrm{Mn}}_{0.50}{\mathrm{Fe}}_{2}{\mathrm{O}}_{4}$, (

**d**) ${\mathrm{Co}}_{0.25}{\mathrm{Mn}}_{0.75}{\mathrm{Fe}}_{2}{\mathrm{O}}_{4}$, (

**e**) ${\mathrm{MnFe}}_{2}{\mathrm{O}}_{4}$. O is red; Fe is gray; Co is green; Mn is cyan.

NPs | ${\mathbf{CoFe}}_{2}{\mathbf{O}}_{4}$ | ${\mathbf{Co}}_{0.75}{\mathbf{Mn}}_{0.25}{\mathbf{Fe}}_{2}{\mathbf{O}}_{4}$ | ${\mathbf{Co}}_{0.50}{\mathbf{Mn}}_{0.50}{\mathbf{Fe}}_{2}{\mathbf{O}}_{4}$ | ${\mathbf{Co}}_{0.25}{\mathbf{Mn}}_{0.75}{\mathbf{Fe}}_{2}{\mathbf{O}}_{4}$ | ${\mathbf{MnFe}}_{2}{\mathbf{O}}_{4}$ |
---|---|---|---|---|---|

Size (nm) | 32 ± 7 | 5.0 ± 0.7 | 5.1 ± 0.6 | 6.4 ± 1.0 | 6.0 ± 0.9 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pussi, K.; Ding, K.; Barbiellini, B.; Ohara, K.; Yamada, H.; Onuh, C.; McBride, J.; Bansil, A.; Chiang, R.K.; Kamali, S.
Atomic Structure of Mn-Doped CoFe_{2}O_{4} Nanoparticles for Metal–Air Battery Applications. *Condens. Matter* **2023**, *8*, 49.
https://doi.org/10.3390/condmat8020049

**AMA Style**

Pussi K, Ding K, Barbiellini B, Ohara K, Yamada H, Onuh C, McBride J, Bansil A, Chiang RK, Kamali S.
Atomic Structure of Mn-Doped CoFe_{2}O_{4} Nanoparticles for Metal–Air Battery Applications. *Condensed Matter*. 2023; 8(2):49.
https://doi.org/10.3390/condmat8020049

**Chicago/Turabian Style**

Pussi, Katariina, Keying Ding, Bernardo Barbiellini, Koji Ohara, Hiroki Yamada, Chuka Onuh, James McBride, Arun Bansil, Ray K. Chiang, and Saeed Kamali.
2023. "Atomic Structure of Mn-Doped CoFe_{2}O_{4} Nanoparticles for Metal–Air Battery Applications" *Condensed Matter* 8, no. 2: 49.
https://doi.org/10.3390/condmat8020049