Morphological Trait Correlations, Gonadal Development Characteristics and Pleopod Nutrient Compositions of the Whelk Volutharpa perryi perryi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Sampling
2.2. Trait Measurements and Gonadal Histological Analysis
2.3. Pleopod Nutrient Composition and Content Detection
2.4. Data Analysis
3. Results
3.1. Summary Statistics of Measured Traits
3.2. Correlation and Multiple Regression Analyses
3.3. Gonadal Development Characteristics
3.4. Pleopod Nutrient Composition Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yamazaki, T.; Sonoda, T.; Nobetsu, T.; Goshima, S. Contribution to the Knowledge of the Taxonomy of the Japanese Species of Volutharpa (Gastropoda: Buccinidae). Venus 2018, 76, 1–18. [Google Scholar] [CrossRef]
- Ikuta, K.; Nakahara, M. Uptake, Retention and Excretion 54Mn by a Perry Whelk Volutharpa ampullacea perryi. Nippon. Suisan. Gakkaishi 1986, 52, 1853–1859. [Google Scholar] [CrossRef]
- He, S.; Sun, X.; Du, M.; Chen, H.; Tan, M.; Sun, H.; Zhu, B. Effects of Muscle Protein Denaturation and Water Distribution on the Quality of False Abalone (Volutharpa ampullacea perryi) during Wet Heating. J. Food Process. Eng. 2018, 42, e12932. [Google Scholar] [CrossRef]
- Zhu, B.; Dong, X.; Sun, L.; Xiao, G.; Chen, X. Effect of Thermal Treatment on the Texture and Microstructure of Abalone Muscle (Haliotis discus). Food Sci. Biotechnol. 2011, 20, 1467–1473. [Google Scholar] [CrossRef]
- Sarmadi, B.H.; Ismail, A. Antioxidative Peptides from Food Proteins: A Review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef]
- He, S.; Zhang, Y.; Sun, H.; Du, M.; Qiu, J.; Tang, M.; Sun, X.; Zhu, B. Antioxidative Peptides from Proteolytic Hydrolysates of False Abalone (Volutharpa ampullacea perryi): Characterization, Identifcation, and Molecular Docking. Mar. Drugs 2019, 17, 116. [Google Scholar] [CrossRef]
- Feldman, A.T.; Wolfe, D. Tissue Processing and Hematoxylin and Eosin Staining. Methods Mol. Biol. 2014, 1180, 31–43. [Google Scholar] [CrossRef]
- Tsugita, A.; Scheffler, J.J. A Rapid Method for Acid Hydrolysis of Protein with a Mixture of Trifluoroacetic Acid and Hydrochloric Acid. Eur. J. Biochem. 1982, 124, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Consultation, J.F.W.E. Protein Quality Evaluation; Food and Agriculture Organization of the United Nations: Rome, Italy, 1991; Volume 51, pp. 1–66. [Google Scholar]
- Yang, F.; Huang, X.; Zhang, C.; Zhang, M.; Huang, C.; Yang, H. Amino Acid Composition and Nutritional Value Evaluation of Chinese Chestnut (Castanea mollis sima Blume) and Its Protein Subunit. RSC Adv. 2018, 8, 2653–2659. [Google Scholar] [CrossRef]
- Salimon, J.; Omar, T.A.; Salih, N. An Accurate and Reliable Method for Identification and Quantification of Fatty Acids and Trans Fatty Acids in Food Fats Samples Using Gas Chromatography. Arab. J. Chem. 2017, 10, 1875–1882. [Google Scholar] [CrossRef]
- Shin, J.M.; Hwang, Y.O.; Tu, O.J.; Jo, H.B.; Kim, J.H.; Chae, Y.Z.; Rhu, K.H.; Park, S.K. Comparison of Different Methods to Quantify Fat Classes in Bakery Products. Food Chem. 2013, 136, 703–709. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, X.; Liu, X.; Chen, M.; Bai, B.; Yang, Y.; Bo, T.; Fan, S. The Separation, Purification, Structure Identification, and Antioxidant Activity of Elaeagnus umbellata Polysaccharides. Molecules 2023, 28, 6468. [Google Scholar] [CrossRef]
- Alexopoulos, E.C. Introduction to Multivariate Regression Analysis. Hippokratia 2010, 14 (Suppl. S1), 23–28. [Google Scholar]
- Slifker, J.; Shapiro, S.S. The Johnson System: Selection and Parameter Estimation. Technometrics 1980, 22, 239–246. [Google Scholar] [CrossRef]
- Jiang, W.; Ma, H.Y.; Ma, C.Y.; Li, S.J.; Liu, Y.X.; Qiao, Z.G.; Ma, L.B. Characteristics of Growth Traits and Their Effects on Body Weight of G1 Individuals in the Mud Crab (Scylla paramamosain). Genet. Mol. Res. 2014, 13, 6050–6059. [Google Scholar] [CrossRef]
- Gaur, A. Correlation and path coefficient analysis. 2018. [Google Scholar] [CrossRef]
- Di, B.A. Coefficient of Determination (R2). In Encyclopedia of Statistics in Quality and Reliability; Ruggeri, F., Kenett, R.S., Faltin, F.W., Eds.; Wiley: Chichester, UK, 2008. [Google Scholar] [CrossRef]
- Jin, W.; Bai, Z.; Fu, L.; Zhang, G.; Li, J. Genetic Analysis of early Growth Traits of the Triangle Shell Mussel, Hyriopsis Cumingii, as An Insight for Potential Genetic Improvement to Pearl Quality and Yield. Aquac. Int. 2012, 20, 927–933. [Google Scholar] [CrossRef]
- Lindley, D.V. Regression and Correlation Analysis. In Time Series and Statistics; Eatwell, J., Milgate, M., Newman, P., Eds.; Palgrave Macmillan: London, UK, 1990. [Google Scholar] [CrossRef]
- Krzywinski, M.; Altman, N. Multiple Linear Regression. Nat. Methods 2015, 12, 1103–1104. [Google Scholar] [CrossRef]
- Sripathi, R.; Kakani, V.G.; Wu, Y. Genotypic Variation and Trait Relationships for Morphological and Physiological Traits among New Switchgrass Populations. Euphytica 2013, 191, 437–453. [Google Scholar] [CrossRef]
- Wang, W.; Ma, C.Y.; Chen, W.; Ma, H.Y.; Zhang, H.; Meng, Y.Y.; Ni, Y.; Ma, L.B. Optimization of Selective Breeding through Analysis of Morphological Traits in Chinese Sea Bass (Lateolabrax maculatus). Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Brosse, S.; Charpin, N.; Su, G.; Toussaint, A.; Herrera-R, G.A.; Tedesco, P.A.; Villéger, S. Fishmorph: A Global Database on Morphological Traits of Freshwater Fishes. Glob. Ecol. Biogeogr. 2021, 30, 2330–2336. [Google Scholar] [CrossRef]
- Steinbach, C.; Císař, P.; Šauer, P.; Klicnarová, J.; Schmidt-Posthaus, H.; Golovko, O.; Kocour, K.H. Synthetic Progestin Etonogestrel negatively Affects Mating Behavior and Reproduction in Endler’s Guppies (Poecilia wingei). Sci. Total Environ. 2019, 663, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Rozenfeld, C.; García-Carpintero, V.; Pérez, L.; Gallego, V.; Herranz-Jusdado, J.G.; Tveiten, H.; Johnsen, H.K.; Fontaine, R.; Weltzien, F.A.; Cañizares, J.; et al. Cold Seawater Induces Early Sexual Developmental Stages in the BPG Axis of European Eel Males. BMC Genom. 2019, 20, 597. [Google Scholar] [CrossRef] [PubMed]
- Jobling, M. National Research Council (NRC): Nutrient Requirements of Fish and Shrimp. Aquacult. Int. 2012, 20, 601–602. [Google Scholar] [CrossRef]
- Shang, G.; Mao, Y.; Wang, X.; Liu, M.; Wang, Y.; Wang, G.; Li, J. Cyp17a Effected by Endocrine Disruptors and Its Function in Gonadal Development of Hyriopsis cumingii. Gen. Comp. Endocrinol. 2022, 323-324, 114028. [Google Scholar] [CrossRef]
- Prato, E.; Fanelli, G.; Parlapiano, I.; Biandolino, F. Bioactive Fatty Acids in Seafood from Ionian Sea and Relation to Dietary Recommendations. Int. J. Food Sci. Nutr. 2020, 71, 693–705. [Google Scholar] [CrossRef]
- Newkirk, G.F. Review of the Genetics and the Potential for Selective Breeding of Commercially Important Bivalves. Aquaculture 1980, 19, 209–228. [Google Scholar] [CrossRef]
- Jourdan, J.; Piro, K.; Weigand, A.; Plath, M. Small-scale Phenotypic Differentiation along Complex Stream Gradients in a Non-native Amphipod. Front. Zool. 2019, 16, 29. [Google Scholar] [CrossRef]
- Muto, N.; Kawasaki, T.; Kakioka, R.; Nagano, A.J.; Shimizu, Y.; Inose, S.; Shimizu, Y.; Takahashi, H. Genetic Architectures of Postmating Isolation and Morphology of Two highly Diverged Rockfishes (genus Sebastes). J. Hered. 2023, 114, 231–245. [Google Scholar] [CrossRef]
- Loukovitis, D.; Sarropoulou, E.; Batargias, C.; Apostolidis, A.P.; Kotoulas, G.; Tsigenopoulos, C.S.; Chatziplis, D. Quantitative Trait Loci for Body Growth and Sex Determination in the Hermaphrodite Teleost Fish Sparus aurata L. Anim. Genet. 2012, 43, 753–759. [Google Scholar] [CrossRef]
- Tanyaros, S.; Tarangkoon, W. Variability in Larval Period, Post-setting Growth and Survival of the Oyster Crassostrea Belcheri Produced by Gamete Stripping Method. Agric. Nat. Resour. 2016, 50, 295–298. [Google Scholar] [CrossRef]
- Hornick, K.M.; Plough, L.V. Tracking Genetic Diversity in a Large-scale Oyster Restoration Program: Effects of Hatchery Propagation and Initial Characterization of Diversity on Restored vs. Wild Reefs. Heredity 2019, 123, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yu, G.; Wang, J.Y.; Yan, J.X.; Yang, R.; Wu, K.C. Path Analysis of the Effects of Morphometric Attributes on the Body Weight of 7-month-old Babylonia areolate. Mar. Sci. 2017, 41, 82–88. [Google Scholar]
- Qin, Z. Studies on the Genetic Diverisity and Morphology of Babylonia lutosa. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2014. [Google Scholar]
- Zhao, L.; He, Y.; Yang, F.; Nie, H.; Yan, X. Correlation and Path Analysis of Morphological and Weight Traits in Marine Gastropod Glossaulax reiniana. Chin. J. Ocean. Limnol. 2014, 32, 821–827. [Google Scholar] [CrossRef]
- Li, X.Y.; Luo, D.; Gu, D.E.; Xu, M.; Mu, X.D.; Zhang, J.E.; Hu, Y.C. The Relationship between Morphological Characters and Body Mass of Different Shell-Colored Apple Snail Pomacea canaliculata in Different Shell-Color. J. Biosaf. 2012, 21, 287–290. [Google Scholar]
- Zheng, L.; He, Y.Y.; Wang, Q.; Yu, A.; Xie, Y.J. Relationship between Morphological Traits and Body Weight of Chinese Shrimp Fenneropenaeus chinensis of Different Genders. Fish. Sci. 2023, 42, 566–574. [Google Scholar] [CrossRef]
- Zhao, C.N.; Yu, T.; Zheng, Y.; Li, B.; Wang, X.; Cai, Z.; Wang, X.; Ren, L.; Xu, S.; Wu, N.; et al. Correlation and Path Analysis of Traits of Male and Female Chlamys farreri with Different Shell Colors. J. Fish. Sci. China 2023, 30, 268–283. [Google Scholar]
- Xiao, L.Y.; Ma, G.F.; Guo, W.X.; Yan, X.W.; Yang, F.; Zhang, G.F. Correlation and Path Analysis to Quantitative Traits of Mactra chinensis in Different Sexes. Chin. Agric. Sci. Bull. 2012, 28, 115–119. [Google Scholar]
- de Assis Lago, A.; Reis-Neto, R.V.; Rezende, T.T.; da Silva Ribeiro, M.C.; de Freitas, R.T.F.; Hilsdorf, A.W.S. Quantitative Analysis of Black Blotching in a Crossbred Red Tilapia and Its Effects on Performance Traits Via a Path Analysis Methodology. J. Appl. Genet. 2019, 60, 393–400. [Google Scholar] [CrossRef]
- Han, S.R.; Song, M.Y.; Zhao, T.J.; Zou, Y.; Chang, Y.Q.; Zhan, Y.Y. Biological Research Progress on Sea Snail Volutharpa ampullacea Perryi: A Review. Chin. J. Fish. 2021, 34, 90–95. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, Z.X. Histological of Gonad and Reproductive Cycle of Neverita didyma. Trans. Oceanol. Limnol. 2009, 2, 67–72. [Google Scholar] [CrossRef]
- Ning, J.H.; Chang, Y.Q.; Song, J.; Hu, P.; Jing, C.C. Gonadal Development and the Reproductive Cycle of Modiolus modiolus. J. Fish. Sci. China 2015, 22, 469–477. [Google Scholar]
- Gao, Y.M.; Tian, B.; Yu, Y.G.; Sun, X.Q.; Ma, R.H. The Gonadal Development and Reproductive Cycle of Japanse scallop Patinopecten yessoensis in Tahe Bay in Dalian. J. Dalian Ocean. Univ. 2007, 22, 335–339. [Google Scholar]
- Yan, B.L.; Xu, X.H.; Zheng, J.S.; Xu, G.C.; Shi, D.Q.; Zhu, Z.Q. Study on the Development of Sex Gland and Reproductive Cycle of Scapharca subcrenata. Trans. Oceanol. Limnol. 2005, 92–98. [Google Scholar]
- Shao, Y.; Zhang, J.; Fang, J.; Xiao, G.; Teng, S.; Chai, X. Reproductive Cycle and early Development of Meretrix lamarkii (Veneroida: Veneridae) Under Artificial Conditions. J. Fish. Sci. China 2017, 24, 82–90. [Google Scholar] [CrossRef]
- Cao, F.; Liu, Y.; Zhang, C.; Luo, J.; Liu, Z. Study on the Development of Sex Gland and Reproductive Cycle of Lutraria sieboldii. Oceanol. Limnol. Sin. 2012, 43, 976–982. [Google Scholar]
- Lin, Z.H.; Shan, L.Z.; Chai, X.L.; Ying, X.P.; Fang, J.; Zhang, J.M.; Zhang, Y.P. The Reproductive biology of Hard Clam Mercenaria mercenaria (Linnaeus, 1758). Oceanol. Limnol. Sin. 2005, 36, 430–436. [Google Scholar]
- Liu, D.J.; Xie, K.E. Reproductive Biology of Coelomactra antiquata. Chin. J. Zool. 2003, 38, 10–15. [Google Scholar]
- Granado-Lorencio, E.C. Seasonal Changes in Condition, Nutrition, Gonad Maturation and Energy Content in Barbel, Barbus sclateri, Inhabiting a Fluctuating River. Environ. Biol. Fishes 1997, 50, 75–84. [Google Scholar]
- Shi, L.; Hao, G.X.; Chen, J.; Ma, S.K.; Weng, W.Y. Nutritional Evaluation of Japanese Abalone (Haliotis discus hannai Ino) Pleopod: Mineral Content, Amino Acid Profile and Protein Digestibility. Food Res. Int. 2020, 129, 108876. [Google Scholar] [CrossRef]
- Hao, Z.L.; Wang, Y.; Yu, Y.Y.; Zhan, Y.Y.; Tian, Y.; Wang, L.; Mao, J.X.; Chang, Y.Q. Analysis and Evaluation of Nutritive Composition in the Pleopod of Neptunea arthritica cumingii Crosse (Gastropoda: Buccinidae). J. Dalian Univ. 2016, 37, 66–70. [Google Scholar]
- Xu, Y.B.; Shen, M.H.; Wei, Y.J.; Wang, D.X.; Ke, C.H. Analysis and Evaluation of Nutritional Composition of Babylonia areolata and Babylonia formosae habei. J. Oceanogr. Tai Wan Strait 2008, 27, 26–32. [Google Scholar]
- Zhu, S.; Zhu, L.; Ke, Z.; Chen, H.; Zheng, Y.; Yang, P.; Xiang, X.; Zhou, X.; Jin, Y.; Deng, S.; et al. A Comparative Study on the Taste Quality of Mytilus coruscus Under Different Shucking Treatments. Food Chem. 2023, 412, 135480. [Google Scholar] [CrossRef] [PubMed]
- Mouritsen, O.G.; Duelund, L.; Petersen, M.A.; Hartmann, A.L.; Frøst, M.B. Umami Taste, Free Amino Acid Composition, and Volatile Compounds of Brown Seaweeds. J. Appl. Phycol. 2019, 31, 1213–1232. [Google Scholar] [CrossRef]
- Dong, Z.G.; Zhang, M.; Wei, S.F.; Ge, H.X.; Li, X.M.; Ni, Q.G.; Ling, Q.F.; Li, Y. Effect of Farming Patterns on the Nutrient Composition and Farming Environment of Loach, Paramisgurnus dabryanus. Aquaculture 2018, 497, 214–219. [Google Scholar] [CrossRef]
- Yamamoto, T.; Inui-Yamamoto, C. The Flavor-enhancing Action of Glutamate and Its Mechanism involving the Notion of Kokumi. NPJ Sci. Food. 2023, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Chen, S.J.; Li, L.H.; Yang, X.Q.; Huang, H. Nutritional Analysis and Quality Evaluation of Four Kinds of Abalone Pleopod. Food Ferment. Industr. 2018, 44, 227–231. [Google Scholar] [CrossRef]
- Wang, H. Composition of Nutritional Composition for Rock Scallop (Crassadoma gigantea) and Sea Scallop (Placopecten magellanicus) and Cultured Scallops of Three Species. Master’s Thesis, Dalian Ocean University, Dalian, China, 2016. [Google Scholar]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Peng, Y.; Pan, B.; Wang, B.; Peng, D.H.; Guo, W. A LC-MS/MS Method to Simultaneously Profile 14 Free Monosaccharides in Biofluids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2022, 1192, 123086. [Google Scholar] [CrossRef] [PubMed]
- Febbraio, M.A.; Karin, M. “Sweet death”: Fructose as a Metabolic Toxin that Targets the Gut-liver Axis. Cell Metab. 2021, 33, 2316–2328. [Google Scholar] [CrossRef]
- Ramdas Nayak, V.K.; Satheesh, P.; Shenoy, M.T.; Kalra, S. Triglyceride Glucose (TyG) Index: A Surrogate Biomarker of Insulin Resistance. J. Pak. Med. Assoc. 2022, 72, 986–988. [Google Scholar] [CrossRef]
- Ran, T.; Li, H.Z.; Liu, Y.; Tang, S.X.; Han, X.F.; Wang, M.; He, Z.X.; Kang, J.H.; Yan, Q.X.; Tan, Z.L. Expression of Genes Related to Sweet Taste Receptors and Monosaccharides Transporters Along the Gastrointestinal Tracts at Different Development Stages in Goats. Livest. Sci. 2016, 188, 111–119. [Google Scholar] [CrossRef]
- Wise, P.M.; Nattress, L.; Flammer, L.J.; Beauchamp, G.K. Reduced Dietary Intake of Simple Sugars Alters Perceived Sweet Taste Intensity but not Perceived Pleasantness. Am. J. Clin. Nutr. 2016, 103, 50–60. [Google Scholar] [CrossRef]
- Wilk, K.; Korytek, W.; Pelczyńska, M.; Moszak, M.; Bogdański, P. The Effect of Artificial Sweeteners Use on Sweet Taste Perception and Weight Loss Efficacy: A Review. Nutrients 2022, 14, 1261. [Google Scholar] [CrossRef]
- Liu, B.; Liu, H.; Ai, C.; Zhu, Z.; Wen, C.; Song, S.; Zhu, B. Distribution of Uronic Acid-containing Polysaccharides in 5 Species of Shellfishes. Carbohydr. Polym. 2017, 164, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Ma, Y.; Li, Y.; Liu, R.; Zeng, M. Mediation of the Microbiome-gut Axis by Qyster (Crassostrea gigas) Polysaccharides: A Possible Protective Role in Alcoholic Liver Injury. Int. J. Biol. Macromol. 2021, 182, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.C.; Sudirman, S.; Mao, C.F.; Kong, Z.L. Glycoprotein from Mytilus edulis Extract Inhibits Lipid Accumulation and Improves Male Reproductive Dysfunction in High-fat Diet-induced Obese Rats. Biomed. Pharmacother. 2019, 109, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Jiang, Q.; Yang, H.; Zhou, X.; Chen, Y.; Chen, H.; Liu, S.; Chen, L. A Review on Shellfish Polysaccharides: Extraction, Characterization and Amelioration of Metabolic Syndrome. Front. Nutr. 2022, 9, 974860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wu, H.; Xia, Z.; Wang, C.; Cai, J.; Huang, Z.; Du, L.; Sun, P.; Xie, J. Partial Characterization, Antioxidant and Antitumor Activities of Three Sulfated Polysaccharides Purified from Bullacta exarata. J. Funct. Foods 2012, 4, 784–792. [Google Scholar] [CrossRef]
- Liu, N. Anti-Inflammatory, Antioxidant and Antilipidemic Activity of Polyaccharide Conjugates Isolated from Abalone Gonad. Master’s Thesis, Dalian University of Technology, Dalian, China, 2021. [Google Scholar] [CrossRef]
- Xing, X.X.; Zhao, X.; Li, D.J.; Yu, G.L.; Yin, X.H. Extraction, Separation and Structural Characterization of Polysaccharides from Neverita didyma. J. Mar. Drugs China 2013, 32, 15–22. [Google Scholar]
- Getachew, A.T.; Lee, H.J.; Cho, Y.J.; Chae, S.J.; Chun, B.S. Optimization of Polysaccharides Extraction from Pacific oyster (Crassostrea gigas) using Subcritical Water: Structural Characterization and Biological Activities. Int. J. Biol. Macromol. 2019, 121, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Zhao, L.; Li, S.; Zhao, X.; Zhang, Q.; Xiong, Q. Preliminary Characterization and Immunostimulatory Activity of Polysaccharides from Glossaulax didyma. Food Chem. Toxicol. 2013, 62, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, J.; Li, D.; Wen, C.; Liu, H.; Song, S.; Zhu, B. Comparison of Polysaccharides of Haliotis discus hannai and Volutharpa ampullacea perryi by PMP-HPLC-MS(n) Analysis upon Acid Hydrolysis. Carbohydr. Res. 2015, 415, 48–53. [Google Scholar] [CrossRef] [PubMed]
Trait | STM | SH | SW | SAH | SAW | BWH | BWW | SWH | SWW | |
---|---|---|---|---|---|---|---|---|---|---|
Female | BM | 0.99 ** | 0.77 ** | 0.85 ** | 0.74 ** | 0.81 ** | 0.93 ** | 0.92 ** | 0.64 ** | 0.87 ** |
STM | - | 0.79 ** | 0.86 ** | 0.76 ** | 0.84 ** | 0.93 ** | 0.92 ** | 0.66 ** | 0.89 ** | |
SH | - | - | 0.65 ** | 0.64 ** | 0.57 ** | 0.79 ** | 0.80 ** | 0.51 ** | 0.72 ** | |
SW | - | - | - | 0.68 ** | 0.68 ** | 0.76 ** | 0.85 ** | 0.65 ** | 0.80 ** | |
SAH | - | - | - | 0.67 ** | 0.77 ** | 0.79 ** | 0.40 * | 0.74 ** | ||
SAW | - | - | - | 0.73 ** | 0.70 ** | 0.51 ** | 0.71 ** | |||
BWH | - | - | - | 0.94 ** | 0.60 ** | 0.83 ** | ||||
BWW | - | - | - | 0.58 ** | 0.81 ** | |||||
SWH | - | - | - | 0.78 ** | ||||||
Male | BM | 0.90 ** | 0.79 ** | 0.47 ** | 0.13 | 0.31 | 0.66 ** | 0.59 ** | 0.29 | 0.37 * |
STM | - | 0.79 ** | 0.57 ** | 0.18 | 0.45 * | 0.65 ** | 0.58 ** | 0.27 | 0.36 * | |
SH | - | - | 0.51 ** | 0.08 | 0.31 | 0.65 ** | 0.40 * | 0.62 ** | 0.48 ** | |
SW | - | - | - | 0.35 | 0.38 * | 0.51 ** | 0.39 * | 0.04 | 0.03 | |
SAH | - | - | - | - | 0.24 | 0.21 | 0.26 | −0.12 | 0.35 | |
SAW | - | - | - | - | - | 0.27 | 0.08 | 0.08 | 0.07 | |
BWH | - | - | - | - | - | - | 0.48 ** | 0.09 | 0.11 | |
BWW | - | - | - | - | - | - | - | −0.05 | 0.31 | |
SWH | - | - | - | - | - | - | - | - | 0.56 ** |
Gender | Qualitative Trait | Morphological Trait | Relative Coefficient | Direct Effect | Indirect Effect | |||
---|---|---|---|---|---|---|---|---|
SW | SAW | BWH | ∑ | |||||
Female | BM | SAW | 0.81 | 0.28 | - | - | 0.53 | 0.81 |
BWH | 0.93 | 0.72 | - | 0.21 | - | 0.93 | ||
STM | SW | 0.86 | 0.28 | - | 0.18 | 0.39 | 0.86 | |
SAW | 0.84 | 0.26 | 0.19 | - | 0.38 | 0.84 | ||
BWH | 0.93 | 0.52 | 0.21 | 0.19 | - | 0.93 | ||
Male | BM | SH | 0.83 | 0.83 | - | - | - | 0.83 |
STM | SH | 0.83 | 0.83 | - | - | - | 0.83 |
Gender | Qualitative Trait | Morphological Trait | SH | SW | SAW | BWH |
---|---|---|---|---|---|---|
Female | BM | SAW | - | - | 0.08 | 0.30 |
BWH | - | - | - | 0.52 | ||
STM | SW | - | 0.08 | 0.10 | 0.22 | |
SAW | - | - | 0.07 | 0.22 | ||
BWH | - | - | - | 0.27 | ||
Male | BM | SH | 0.69 | - | - | - |
STM | SH | 0.69 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Yin, W.; Han, S.; Zhao, T.; Hao, Z.; Yin, D.; Zhan, Y.; Chang, Y. Morphological Trait Correlations, Gonadal Development Characteristics and Pleopod Nutrient Compositions of the Whelk Volutharpa perryi perryi. Fishes 2024, 9, 72. https://doi.org/10.3390/fishes9020072
Yu L, Yin W, Han S, Zhao T, Hao Z, Yin D, Zhan Y, Chang Y. Morphological Trait Correlations, Gonadal Development Characteristics and Pleopod Nutrient Compositions of the Whelk Volutharpa perryi perryi. Fishes. 2024; 9(2):72. https://doi.org/10.3390/fishes9020072
Chicago/Turabian StyleYu, Linghui, Weijun Yin, Senrong Han, Tanjun Zhao, Zhenlin Hao, Donghong Yin, Yaoyao Zhan, and Yaqing Chang. 2024. "Morphological Trait Correlations, Gonadal Development Characteristics and Pleopod Nutrient Compositions of the Whelk Volutharpa perryi perryi" Fishes 9, no. 2: 72. https://doi.org/10.3390/fishes9020072
APA StyleYu, L., Yin, W., Han, S., Zhao, T., Hao, Z., Yin, D., Zhan, Y., & Chang, Y. (2024). Morphological Trait Correlations, Gonadal Development Characteristics and Pleopod Nutrient Compositions of the Whelk Volutharpa perryi perryi. Fishes, 9(2), 72. https://doi.org/10.3390/fishes9020072