Effects of Prolonged Fasting and Refeeding on Metabolic, Physiological, Tissue, and Growth Performance Adjustments in Colossoma macropomum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish and Experimental Conditions
2.2. Experimental Protocol
- − Fed group: The fish were continuously fed a commercial diet (the same diet used in the acclimatization period) twice a day (08:00 and 16:00) until apparent satiation and for 59 days;
- − Fasted/Refed group: The fish were subjected to fasting for 45 days and subsequently refed with a commercial diet (the same diet used in the acclimatization period and for the fed group) twice a day (08:00 and 16:00) until apparent satiation for 14 days, totaling 59 experimental days.
2.3. Blood Parameters and Body Indices
- − Hepatosomatic index (%) = (liver weight/body weight) × 100;
- − Mesenteric fat index (%) = (visceral fat weight/body weight) × 100.
2.4. Growth Performance
- − Weight gain (g) = final weight − initial weight;
- − Specific growth rate (%/day) = 100 × [(ln final weight) − (ln initial weight)/days between samplings];
- − Condition factor (g/cm3) = 100 × [final weight/(final length)3].
2.5. Histological Analyses of the Foregut and White Muscle
2.6. Statistical Analysis
3. Results
3.1. Hematological Parameters
3.2. Biochemical Parameters and Biometric Indices
3.3. Growth Performance
3.4. Histological Parameters of the Foregut and White Muscle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navarro, I.; Gutierrez, J. Fasting and starvation. Biochem. Mol. Biol. Fishes 1995, 4, 394–434. [Google Scholar]
- Dar, S.A.; Srivastava, P.P.; Varguese, T.; Rasool, S.I.; Anand, G.; Gupta, S.; Gireesh-Babu, P.; Krishna, G. Regulation of compensatory growth by molecular mechanism in Labeo rohita juveniles under different feeding regimes. Gen. Comp. Endocrinol. 2018, 261, 89–96. [Google Scholar]
- Ali, M.; Nicieza, A.; Wootton, R.J. Compensatory growth in fishes: A response to growth depression. Fish Fish. 2003, 4, 147–190. [Google Scholar] [CrossRef]
- Jobling, M. Are compensatory growth and catch-up growth two sides of the same coin? Aquac. Int. 2010, 18, 501–510. [Google Scholar] [CrossRef]
- Favero, G.C.; Santos, F.A.; Júlio, G.S.C.; Pedras, P.P.C.; Ferreira, A.L.; Silva, W.S.; Luz, R.K. Effects of short feed restriction cycles in Piaractus brachypomus juveniles. Aquaculture 2021, 536, 736465. [Google Scholar] [CrossRef]
- Assis, Y.P.A.S.; Porto, L.A.; Melo, N.F.A.C.; Palheta, G.D.A.; Luz, R.K.; Favero, G.C. Feed restriction as a feeding management strategy in Colossoma macropomum juveniles under recirculating aquaculture system (RAS). Aquaculture 2020, 529, 735689. [Google Scholar] [CrossRef]
- Blanquet, I.; Oliva-Teles, A. Effect of feed restriction on the growth performance of turbot (Scophthalmus maximus L.) juveniles under commercial rearing conditions. Aquac. Res. 2010, 41, 1255–1260. [Google Scholar]
- Hoseini, S.M.; Yousefi, M.; Rajabiesterabadi, H.; Paktinat, M. Effect of short-term (0–72 h) fasting on serum biochemical characteristics in rainbow trout Oncorhynchus mykiss. J. Appl. Ichthyol. 2014, 30, 569–573. [Google Scholar] [CrossRef]
- Takahashi, L.S.; Biller, J.D.; Criscuolo-Urbinati, E.; Urbinati, E.C. Feeding strategy with alternate fasting and refeeding: Effects on farmed pacu production. J. Anim. Physiol. Anim. Nutr. 2011, 95, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Rios, F.S.; Kalinin, A.L.; Rantin, F.T. The effects of long-term food deprivation on respiration and haematology of the neotropical fish Hoplias malabaricus. J. Fish Biol. 2002, 61, 85–95. [Google Scholar] [CrossRef]
- Bar, N. Physiological and hormonal changes during prolonged starvation in fish. Can. J. Fish. Aquatic Sci. 2014, 71, 1447–1458. [Google Scholar] [CrossRef]
- Furné, M.; Morales, A.E.; Trenzado, C.E.; García-Gallego, M.; Carmen Hidalgo, M.; Domezain, A.; Sanz Rus, A. The metabolic effects of prolonged starvation and refeeding in sturgeon and rainbow trout. J. Comp. Physiol. 2012, 182, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Farbridge, K.J.; Leatherland, J.F. Plasma growth hormone levels in fed and fasted rainbow trout (Oncorhynchus mykiss) are decreased following handling stress. Fish Physiol. Biochem. 1992, 10, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Piñeyro, J.I.G.; Alexandre, R.L.S.; Sousa, R.G.C. Aspectos histológico das vilosidades intestinais de Tambaquis (Colossoma macropomum, Cuvier, 1818) selvagens e de cultivo. Braz. J. Develop. 2020, 6, 51832–51839. [Google Scholar] [CrossRef]
- Forgati, M. Crescimento Muscular Compensatório e Metabolismo Energético de Cyprinus carpio Realimentados Após Privação de Alimento. AGRIS. 2011. Available online: https://agris.fao.org/search/en/providers/122415/records/647368c253aa8c89630d60b3 (accessed on 2 February 2024).
- Ferreira, C.M.; Antoniassi, N.A.B.; Silva, F.G.; Povh, J.A.; Potença, A.; Moraes, T.C.H.; Silva, T.K.S.T.; Abreu, J.S. Características histomorfométricas do intestino de juvenis de tambaqui após uso de probiótico na dieta e durante transporte. Pesq. Vet. Bras. 2014, 34, 1258–1260. [Google Scholar] [CrossRef]
- Weatherley, A.H.; Gill, H.S. Dynamics of increase in muscle fibers in fishes in relation to size and growth. Cell. Mol. Life Sci. 1985, 41, 353–354. [Google Scholar] [CrossRef]
- Xu, Y.; Tan, Q.; Kong, F.; Yu, H.; Zhu, Y.; Yao, J.; Azm, F.R.A. Fish growth in response to different feeding regimes and the related molecular mechanism on the changes in skeletal muscle growth in grass carp (Ctenopharyngodon idellus). Aquaculture 2019, 512, 734295. [Google Scholar] [CrossRef]
- Nebo, C.; Gimbo, R.Y.; Kojima, J.T.; Overturf, K.; Dal-Pai-Silva, M.; Portella, M.C. Depletion of stored nutrients during fasting in Nile tilapia (Oreochromis niloticus) juveniles. J. Appl. Aquac. 2013, 30, 157–173. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Cui, X.; Zhang, S.; Zhong, X.; Ke, J.; Wu, Y.; Lui, Z.; Wei, C.; Ding, Z.; et al. Starvation affects the muscular morphology, antioxidant enzyme activity, expression of lipid metabolism-related genes, and transcriptomic profile of javelin goby (Synechogobius hasta). Aquac. Nutr. 2022, 2022, 7057571. [Google Scholar] [CrossRef]
- Prado-Lima, M.; Val, A.L. Transcriptomic characterization of tambaqui (Colossoma macropomum, Cuvier, 1818) exposed to three climate change scenarios. PLoS ONE 2016, 11, e0152366. [Google Scholar] [CrossRef]
- IBGE (Brazilian Geography and Statistics Institute). Produção da Aquicultura. 2022. Available online: https://sidra.ibge.gov.br/tabela/3940#resultado (accessed on 13 October 2023).
- Araújo-Dairiki, T.B.; Chaves, F.C.M.; Dairiki, J.K. Seeds of sacha inchi (Plukenetia volubilis, Euphorbiaceae) as a feed ingredient for juvenile tambaqui, Colossoma macropomum, and matrinxã, Brycon amazonicus (Characidae). Acta Amaz. 2018, 48, 32–37. [Google Scholar] [CrossRef]
- Maia, E.L.; Rodriguez-Amaya, D.B. Fatty acid composition of the total, neutral and phospholipids of the Brazilian freshwater fish Colossoma macropomum. Dev. Food Sci. 1992, 29, 633–642. [Google Scholar]
- Woynárovich, A.; Anrooy, R.V. Field guide to the culture of tambaqui (Colossoma macropomum, Cuvier, 1816). In FAO–Fisheries and Aquaculture Technical Paper; Ed. 624; FAO: Rome, Italy, 2019. [Google Scholar]
- Roa, F.G.B.; Silva, S.S.; Hoshiba, M.A.; Silva, L.K.S.; Barros, A.F.; Abreu, J.S. Production performance of tambaqui juveniles subjected to short feed-deprivation and refeeding cycles. Bol. Inst. Pesca 2019, 45, 1–9. [Google Scholar] [CrossRef]
- Araújo-Lima, C.A.R.M.; Gomes, L.C. Criação do tambaqui. In Espécies Nativas para a Piscicultura no Brasil; Baldisserotto, B., Gomes, L., Eds.; Editora UFSM: Santa Maria, Brazil, 2005; pp. 175–202. [Google Scholar]
- Figueiredo, F.M.; Bomfim, S.C.; Lima, R.A.; Pontes, W.P.; Pontuschka, R.B.; Hurtado, F.B. Exploratory study of limnological parameters during the cycle of tambaqui fingerlings. Rev. Eletrônica Gest. Educ. Tecnol. Ambient. 2018, 22, 1–14. [Google Scholar] [CrossRef]
- Fazio, F. Fish hematology analysis as an important tool of aquaculture: A review. Aquaculture 2019, 500, 237–242. [Google Scholar] [CrossRef]
- Nakayama, C.L.; Silva, L.F.S.; Santos, F.A.C.; Boaventura, T.P.; Favero, G.C.; Palheta, G.D.A.; Melo, N.F.A.C.; Romano, L.A.; Luz, R.K. Zootechnical performance and some physiological indices of tambaqui, Colossoma macropomum juveniles during biofloc maturation and in different feed regimes. Agriculture 2022, 12, 1025. [Google Scholar] [CrossRef]
- Polakof, S.; Panserat, S.; Soengas, J.L.; Moon, T.W. Glucose metabolism in fish: A review. J. Comp. Physiol. 2012, 182, 1015–1045. [Google Scholar] [CrossRef]
- Polakof, S.; Panserat, S. How Tom Moon’s research highlighted the question of glucose tolerance in carnivorous fish. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2016, 199, 43–49. [Google Scholar] [CrossRef]
- Dai, Y.; Shen, Y.; Guo, J.; Yang, H.; Chen, F.; Zhang, W.; Wu, W.; Xu, X.; Li, J. Glycolysis and gluconeogenesis are involved of glucose metabolism adaptation during fasting and re-feeding in black carp (Mylopharyngodon piceus). Aquac. Fish. 2022, in press. [Google Scholar] [CrossRef]
- Davis, K.B.; Gaylord, T.G. Effect of fasting on body composition and responses to stress in sunshine bass. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2011, 158, 30–36. [Google Scholar] [CrossRef]
- Alonso-Fernández, A.; Saborido-Rey, F. Relationship between energy allocation and reproductive strategy in Trisopterus luscus. J. Exp. Mar. Biol. Ecol. 2012, 416–417, 8–16. [Google Scholar] [CrossRef]
- Li, H.; Xu, W.; Jin, J.; Yang, Y.; Zhu, X.; Han, D.; Liu, H.; Xie, S. Effects of starvation on glucose and lipid metabolism in gibel carp (Carassius auratus gibelio var. CAS III). Aquaculture 2018, 496, 166–175. [Google Scholar] [CrossRef]
- Godavarthy, P.; Kumari, Y.S.; Bikshapathy, E. Starvation induced cholesterogenesis in hepatic and extra hepatic tissues of climbing Perch, Anabas testudineus (Bloch). Saudi J. Biol. Sci. 2012, 19, 489–494. [Google Scholar] [CrossRef]
- Jafari, N.; Falahatkar, B.; Sajjadi, M.M. The effect of feeding strategies and body weight on growth performance and hematological parameters of Siberian sturgeon (Acipenser baerii, Brandt 1869): Preliminary results. J. Appl. Ichthyol. 2019, 35, 289–295. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Khattab, Y.A.E.; Ahmad, M.H.; Shalaby, A.M.E. Compensatory growth, feed utilization, whole body composition, and hematological changes in starved juvenile Nile tilapia, Oreochromis niloticus (L.). J. Appl. Aquac. 2006, 18, 17–36. [Google Scholar] [CrossRef]
- Elbialy, Z.; Gamal, S.; Al-Hawary, I.; Shukry, M.; Salah, A.; Aboshosha, A.A.; Assar, D.H. Exploring the impacts of diferent fasting and refeeding regimes on Nile tilapia (Oreochromis niloticus L.): Growth performance, histopathological study, and expression levels of some muscle growth-related genes. Fish Physiol. Biochem. 2022, 48, 973–989. [Google Scholar] [CrossRef]
- Falahatkar, B. The metabolic effects of feeding and fasting in beluga Huso huso. Mar. Environ. Res. 2012, 82, 69–75. [Google Scholar] [CrossRef]
- Porto, L.A.; Assis, Y.P.A.S.; Amorim, M.P.S.; Luz, R.K.; Favero, G.C. Physiological responses to long fasting followed by refeeding in juveniles of pirapitinga, Piaractus brachypomus. Acta Amaz. 2023, 53, 187–195. [Google Scholar] [CrossRef]
- Valenti, W.C.; Barros, H.P.; Moraes-Valenti, P.M.; Bueno, G.W.; Cavalli, R.O. Aquaculture in Brazil: Past, present and future. Aquac. Rep. 2021, 19, 100611. [Google Scholar] [CrossRef]
- Neto, R.V.R.; Freitas, R.T.F.; Serafini, M.A.; Costa, A.C.; Freato, T.A.; Rosa, P.V.; Allaman, I.B. Interrelationships between morphometric variables and rounded fish body yields evaluated by path analysis. Rev. Bras. Zoot. 2012, 41, 1576–1582. [Google Scholar] [CrossRef]
- Lima-Junior, S.E.; Cardone, I.B.; Goitein, R. Determination of a method for calculation of Allometric Condition Factor of fish. Acta Sci. 2002, 24, 397–400. [Google Scholar]
- Rios, F.S.; Carvalho, C.S.; Pinheiro, G.H.D.; Donatti, L.; Fernandes, M.N.; Rantin, F.T. Utilization of endogenous reserves and effects of starvation on the health of Prochilodus lineatus (Prochilodontidae). Environ. Biol. Fish. 2011, 91, 87–94. [Google Scholar] [CrossRef]
- Eroldogan, O.T.; Kumlu, M.; Aktas, M. Optimum feeding rates for European sea bass Dicentrarchus labrax L. reared in seawater and freshwater. Aquaculture 2004, 231, 501–515. [Google Scholar] [CrossRef]
- Cho, S.H.; Lee, S.-M.; Park, B.H.; Ji, S.-C. Compensatory growth of juvenile olive flounder, Paralichthys olivaceus L., and changes in proximate composition and body condition indexes during fasting and after refeeding in summer season. J. World Aquac. Soc. 2006, 37, 168–174. [Google Scholar] [CrossRef]
- Bu, X.; Lian, X.; Zhang, Y.; Yang, C.; Cui, C.; Che, J.; Tang, B.; Su, B.; Zhou, Q.; Yang, Y. Effects of feeding rates on growth, feed utilization, and body composition of juvenile Pseudobagrus ussuriensis. Aquac. Int. 2017, 25, 1821–1831. [Google Scholar] [CrossRef]
- Bandeen, J.; Leatherland, J.F. Changes in the proximate composition of juvenile white suckers following re-feeding after a prolonged fast. J. World Aquac. Soc. 1997, 5, 327–337. [Google Scholar]
- Gaylord, I.G.; Gatlin, D.M., III. Assessment of compensatory growth in channel catfish Ictalurus punctatus R. and Associated changes in body condition indices. J. World Aquac. Soc. 2000, 31, 326–336. [Google Scholar] [CrossRef]
- Rueda, F.M.; Martinez, F.J.; Zamora, S.; Kentouri, M.; Divanach, P. Effect of fasting and refeeding on growth and body composition of red porgy, Pagrus pagrus L. Aquac. Res. 1998, 29, 447–452. [Google Scholar]
- Shen, Y.; Li, H.; Zhao, J.; Tang, S.; Zhao, Y.; Bi, Y.; Chen, X. The digestive system of mandarin fish (Siniperca chuatsi) can adapt to domestication by feeding with artificial diet. Aquaculture 2021, 538, 736546. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, G.; Qu, L.; Zhong, X.; Gao, Y.; Ding, Z.; Xu, J.; Chen, X.; Chen, H. Effect of starvation on intestinal morphology, digestive enzyme activity and expression of lipid metabolism-related genes in javelin goby (Synechogobius hasta). Aquac. Res. 2022, 53, 87–97. [Google Scholar] [CrossRef]
- Henández, D.R.; Barrios, C.E.; Santinón, J.J.; Sánchez, S.; Baldisserotto, B. Effect of fasting and feeding on growth, intestinal morphology and enteroendocrine cell density in Rhamdia quelen juveniles. Aquac. Res. 2018, 49, 1512–1520. [Google Scholar] [CrossRef]
- Mello, G.C.G.; Santos, M.L.; Arantes, F.P.; Pessali, T.C.; Brito, M.F.G.; Santos, J.E. Morphological characterisation of the digestive tract of the catfish Lophiosilurus alexandri Steindachner, 1876 (Siluriformes, Pseudopimelodidae). Acta Zool. 2019, 100, 14–23. [Google Scholar] [CrossRef]
- Santos, M.L.; Arantes, F.P.; Pessali, T.C.; Santos, J.E. Morphological, histological and histochemical analysis of the digestive tract of Trachelyopterus striatulus (Siluriformes: Auchenipteridae). Zoologia 2015, 32, 296–305. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porto, L.d.A.; Assis, Y.P.A.S.; Amorim, M.P.S.; Oliveira, P.E.C.M.d.; Paschoalini, A.L.; Bazzoli, N.; Luz, R.K.; Favero, G.C. Effects of Prolonged Fasting and Refeeding on Metabolic, Physiological, Tissue, and Growth Performance Adjustments in Colossoma macropomum. Fishes 2024, 9, 71. https://doi.org/10.3390/fishes9020071
Porto LdA, Assis YPAS, Amorim MPS, Oliveira PECMd, Paschoalini AL, Bazzoli N, Luz RK, Favero GC. Effects of Prolonged Fasting and Refeeding on Metabolic, Physiological, Tissue, and Growth Performance Adjustments in Colossoma macropomum. Fishes. 2024; 9(2):71. https://doi.org/10.3390/fishes9020071
Chicago/Turabian StylePorto, Lívia de A., Yhago P. A. S. Assis, Matheus P. S. Amorim, Paulo E. C. M. de Oliveira, Alessandro L. Paschoalini, Nilo Bazzoli, Ronald K. Luz, and Gisele C. Favero. 2024. "Effects of Prolonged Fasting and Refeeding on Metabolic, Physiological, Tissue, and Growth Performance Adjustments in Colossoma macropomum" Fishes 9, no. 2: 71. https://doi.org/10.3390/fishes9020071
APA StylePorto, L. d. A., Assis, Y. P. A. S., Amorim, M. P. S., Oliveira, P. E. C. M. d., Paschoalini, A. L., Bazzoli, N., Luz, R. K., & Favero, G. C. (2024). Effects of Prolonged Fasting and Refeeding on Metabolic, Physiological, Tissue, and Growth Performance Adjustments in Colossoma macropomum. Fishes, 9(2), 71. https://doi.org/10.3390/fishes9020071