Different Protein Hydrolysates Can Be Used in the Penaeus vannamei (Boone, 1934) Diet as a Partial Replacement for Fish Meal during the Grow-Out Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Condition and Diet Formulation
2.2. Water Quality Monitoring
2.3. Zootechnical Performance and Animal Welfare Assessment
2.4. Centesimal Chemical Composition of Feeds and Shrimp
2.5. Enzymatic Activity Assessment
2.6. Total Hemocyte Count
- where:
- THC mL−1: total hemocyte count per milliliter;
- N° TCC: total number of cells counted;
- N° QC: number of quadrants counted;
- FD: dilution factor.
2.7. Statistical Analysis
3. Results
3.1. Zootechnical Performance and Animal Welfare Assessment
3.2. Centesimal Chemical Composition of Feeds and Shrimps
3.3. Enzymatic Activity Assessment
3.4. Total Hemocyte Count
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization. The State of World Fisheries and Aquaculture. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Richardson, A.; Dantas-Lima, J.; Lefranc, M.; Walraven, M. Effect of a black soldier fly ingredient on the growth performance and disease resistance of juvenile Pacific White Shrimp (Litopenaeus vannamei). Animals 2021, 11, 1450. [Google Scholar] [CrossRef]
- Araripe, M.N.B.A.; Araripe, H.G.A.; Lopes, J.B.; Castro, P.L.; Braga, T.E.A.; Ferreira, A.H.C.; Abreu, M.L.T. Redução da proteína bruta com suplementação de aminoácidos em rações para alevinos de tambatinga. R. Bras. Zootec. 2011, 40, 1845–1850. [Google Scholar] [CrossRef]
- Shao, J.; Zhao, W.; Liu, X.; Wang, L. Growth performance, digestive enzymes, and TOR signaling pathway of Litopenaeus vannamei are not significantly affected by dietary protein hydrolysates in practical conditions. Front. Physiol. 2018, 9, 998. [Google Scholar] [CrossRef] [PubMed]
- Médale, F.; Kaushik, S. Les sources protéiques dans les aliments pour les poissons d’élevage. Cah. Agric. 2009, 189, 103–111. [Google Scholar] [CrossRef]
- National Research Council–NRC. Nutrient Requirements of Fish and Shrimp; Animal Nutrition Series, National Research Council of the National Academies; The National Academies Press: Washington, DC, USA, 2011; 376p. [Google Scholar]
- González-Félix, M.L.; Perez-Velazquez, M.; Ezquerra-Brauer, J.M.; Bringas-Alvarado, L.; Sánchez-Sánchez, A.; Torres-Arreola, W. Evaluation of jumbo squid (Dosidicus gigas) byproduct hydrolysates obtained by acid-enzymatic hydrolysis and by autohydrolysis in practical diets for Pacific white shrimp (Litopenaeus vannamei). J. Food Sci. Technol. 2014, 34, 552–558. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, Y.; Liu, Y.; Tian, L.; Lin, H.; Chen, X.; Yang, H.; Liang, G. Effects of graded replacement of fish meal by fish protein hydrolysate on growth performance of early post-larval Pacific white shrimp (Litopenaeus vannamei, Boone). J. Appl. Anim. Res. 2014, 42, 6–15. [Google Scholar] [CrossRef]
- Quinto, B.P.T.; Albuquerque, J.V.; Bezerra, R.S.; Peixoto, S.; Soares, R. Replacement of fishmeal by two types of fish protein hydrolysate in feed for post larval shrimp Litopenaeus vannamei. Aquac. Nutr. 2017, 24, 768–776. [Google Scholar] [CrossRef]
- Soares, M.; Rezende, P.C.; Corrêa, N.M.; Rocha, J.S.; Martins, M.A.; Andrade, T.C.; Fracalossi, D.M.; Vieira, F.N. Protein hydrolysates from poultry by-product and swine liver as an alternative dietary protein source for the Pacific white shrimp. Aquac. Rep. 2020, 17, e100344. [Google Scholar] [CrossRef]
- Soares, M.; Gonçalves, P.; Schleder, D.D.; Delgadillo-Diaz, M.; Gullian-Klanian, M.; Vieira, F.N. Protein hydrolysate of poultry by-product and swine liver in the diet of pacific white shrimp. Bol. Inst. Pesca 2021, 47, e657. [Google Scholar] [CrossRef]
- Hou, Y.; Wu, Z.; Dai, Z.; Wang, G.; Wu, G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol. 2017, 8, 24. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Kumar, B.D.; Hemalatha, R.; Jyothirmayi, T. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem. 2012, 135, 3020–3038. [Google Scholar] [CrossRef]
- Santos, R.A.; Piovesan, M.R.; Oliveira, S.R.; Hattori, J.F.A.; Souza, O.J.; Boscolo, W.J.; Signor, A.; Bittencourt, F. Atratividade e palatabilidade da proteína hidrolisada de penas para juvenis de tambacu (Colossoma macropomum x Piaractus mesopotamicus). Res. Soc. Dev. 2022, 11, e19111637352. [Google Scholar] [CrossRef]
- Bui, H.T.D.; Khosravi, S.; Fournier, V.; Herault, M.; Lee, K.J. Growth performance, feed utilization, innate immunity, digestibility and disease resistance of juvenile red seabream (Pagrus major) fed diets supplemented with protein hydrolysates. Aquaculture 2014, 418–419, 11–16. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Jyothirmayi, T.; Diwan, P.V.; Kumar, B.D. Antioxidant activity and functional properties of enzymatic protein hydrolysates from common carp (Cyprinus carpio) roe (egg). J. Food Sci. Technol. 2015, 52, 5817–5825. [Google Scholar] [CrossRef]
- Hlordzi, V.; Wang, J.; Kuebutornye, F.K.A.; Yang, X.; Tan, B.; Li, T.; Cui, Z.; Lv, S.; Lao, T.; Chi, S. Hydrolysed fish protein powder is better at the growth performance, hepatopancreas and intestinal development of Pacific white shrimp (Litopenaeus vannamei). Aquac. Rep. 2022, 23, 101025. [Google Scholar] [CrossRef]
- Mahdy, M.A.; Jamal, M.T.; Al-Harb, M.; Al-Mur, B.A.; Haque, M.F. Use of yeasts in aquaculture nutrition and immunostimulation: A review. J. Appl. Biol. 2022, 10, 59–65. [Google Scholar] [CrossRef]
- Fawzya, Y.N.; Nursatya, S.M.; Susilowati, R.; Chasanah, E. Characteristics of fish protein hydrolysate from Yellowstripe Scad (Selaroides leptolepis) produced by a local microbial protease. E3S Web Conf. 2020, 147, e03017. [Google Scholar] [CrossRef]
- American Public Health Association–APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Boyd, C.E. Water Quality in Warmwater Fish Ponds (n°. 639.3 B6923w Ej. 1 009523); Auburn University: Auburn, AL, USA, 1979. [Google Scholar]
- Van Wyk, P.; Davis-Hodgkins, M.; Laramore, R.; Main, K.L.; Mountain, J.; Scarpa, J. Farming Marine Shrimp in Recirculating Freshwater Systems; Harbor Branch Oceanographic Institution: Ft. Pierce, FL, USA, 1999. [Google Scholar]
- Cheng, W.; Liu, C.H.; Kuo, C.M. Effects of dissolved oxygen on hemolymph parameters of freshwater giant prawn, Macrobrachium rosenbergii (de Man). Aquaculture 2003, 220, 843–856. [Google Scholar] [CrossRef]
- Bett, C.; Vinatea, L. Combined effect of body weight, temperature and salinity on shrimp Litopenaeus vannamei oxygen consumption rate. Braz. J. Oceanogr. 2009, 57, 305–314. [Google Scholar] [CrossRef]
- Kuhn, D.D.; Smith, S.A.; Boardman, G.D.; Angier, M.W.; Marsh, L.; Flick Jr, G.J. Chronic toxicity of nitrate to Pacific white shrimp, Litopenaeus vannamei: Impacts on survival, growth, antennae length, and pathology. Aquaculture 2010, 309, 109–114. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemist—AOAC. Official Methods of Analysis of AOAC International, 16th ed.; AOAC Inc.: Arlington, VA, USA, 1995. [Google Scholar]
- Retcheski, M.C.; Maximowski, L.V.; Escorsin, K.J.S.; Kurosaki, J.K.A.R.; Romão, S.; Bitencourt, T.B.; Parra, J.E.G.; Cazarolli, L.H. Yarrowia lipolytica biomass—A potential additive to boost metabolic and physiological responses of Nile tilapia. Fish Physiol. Biochem. 2023, 49, 655–670. [Google Scholar] [CrossRef]
- Hummel, B.C. A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can. J. Biochem. Physiol. 1959, 37, 1393–1399. [Google Scholar] [CrossRef]
- Niiyama, T.; Toyohara, H. Widespread distribution of cellulase and hemicellulase activities among aquatic invertebrates. Fish. Sci. 2011, 77, 649–655. [Google Scholar] [CrossRef]
- Ashley, P.J. Fish welfare: Current issues in aquaculture. Appl. Anim. Behav. Sci. 2007, 104, 199–235. [Google Scholar] [CrossRef]
- Vieira, F.D.N.; Jatobá, A.; Mouriño, J.L.P.; Buglione Neto, C.C.; Silva, J.S.D.; Seiffert, W.Q.; Vinatea, L.A. Use of probiotic-supplemented diet on a Pacific white shrimp farm. R. Bras. Zootec. 2016, 45, 203–207. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatical Analysis, 5th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Martínez-Alvarez, O.; Chamorro, S.; Brenes, A. Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Res. Int. 2015, 73, 204–212. [Google Scholar] [CrossRef]
- Alves, D.R.S.; Oliveira, S.R.; Luczinski, T.G.; Paulo, I.G.P.; Boscolo, W.R.; Bittencourt, F.; Signor, A. Palatability of protein hydrolysates from industrial byproducts for Nile tilapia juveniles. Animals 2019, 9, 311. [Google Scholar] [CrossRef] [PubMed]
- Hernández, C.; Olvera-Novoa, M.A.; Aguilar-Vejar, K.; González-Rodríguez, B.; Parra, I.A. Partial replacement of fish meal by porcine meat meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2008, 277, 244–250. [Google Scholar] [CrossRef]
- Bauer, W.; Prentice-Hernandez, W.; Tesser, M.B.; Wasielesky, W., Jr.; Poersch, L.H.S. Substitution of fishmeal with microbial floc meal and soy protein concentrate in diets for the pacific white shrimp Litopenaeus vannamei. Aquaculture 2012, 15, 112–116. [Google Scholar] [CrossRef]
- New, M.; Valenti, W.; Tidwell, J.; D’Abramo, L.; Kutty, M. Freshwater Prawns: Biology and Farming, 1st ed.; Wiley-Blackwell: Chichester, UK, 2010; 544p. [Google Scholar]
- Eap, D.; Correa, S.; Ngo-Vu, H.; Derby, C.D. Chemosensory basis of feeding behavior in pacific white shrimp, Litopenaeus vannamei. Biol. Bull. 2020, 239, 115–131. [Google Scholar] [CrossRef]
- Ebadi, H.; Zakeri, M.; Mousavi, S.M.; Yavari, V.; Souri, M. The interaction effects of dietary lipid, vitamin E and vitamin C on growth performance, feed utilization, muscle proximate composition and antioxidant enzyme activity of white leg shrimp (Litopenaeus vannamei). Aquac. Res. 2020, 52, 2048–2060. [Google Scholar] [CrossRef]
- Carrillo-Farnés, O.; Forrellat-Barrios, A.; Guerrero-Galván, S.; Vega-Villasante, F. A review of digestive enzyme activity in Penaeid shrimps. Crustaceana 2007, 80, 257–275. [Google Scholar] [CrossRef]
- Roy, S.; Kumar, V.; Mitra, A.; Manna, R.K.; Suresh, V.R.; Homechaudhur, S. Amylase and protease activity in shrimps and prawn of Sundarbans, West Bengal, India. Indian J. Geo Mar. Sci. 2018, 47, 53–59. [Google Scholar]
- Aguiñaga-Cruz, J.A.; Sainz-Hernández, J.C.; García-Rodríguez, L.D.; García-Ulloa, M.; García-Gutiérrez, C.; Montoya-Mejía, M. Trypsin polymorphism and modulation in Penaeus vannamei (Boone, 1931): A review. Lat. Am. J. Aquat. Res. 2019, 47, 723–732. [Google Scholar] [CrossRef]
- Costa, A.M.; Martins, P.C.C. Análise da contagem total de hemócitos e capacidade coagulante da hemolinfa do camarão Litopenaeus vannamei (BOONE, 1931) em cultivos com ocorrência de necrose muscular. Bol. Inst. Pesca 2009, 35, 545–551. [Google Scholar]
Ingredients (g kg−1) | Treatments | |||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T6 | |
Soybean meal | 400.00 | 400.00 | 400.00 | 374.20 | 400.00 | 400.00 |
Wheat flour | 138.70 | 143.20 | 143.10 | 154.20 | 132.10 | 130.60 |
Wheat bran | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Poultry viscera flour | 125.00 | 126.30 | 118.10 | 147.30 | 140.50 | 142.70 |
Fish meal | 137.90 | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 |
Chicken Protein Hydrolysate (CPH) | 0.00 | 60.00 | 0.00 | 0.00 | 0.00 | 0.00 |
CPH + maltodextrin | 0.00 | 0.00 | 0.00 | 0.00 | 60.00 | 0.00 |
CPH + yeast | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 60.00 |
Feather hydrolysate BRF® | 0.00 | 0.00 | 60.00 | 0.00 | 0.00 | 0.00 |
Aquabite® | 0.00 | 0.00 | 0.00 | 60.00 | 0.00 | 0.00 |
Antifungal | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Antioxidant | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Limestone | 13.90 | 20.40 | 19.90 | 20.40 | 19.90 | 19.90 |
Binder | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Methionine | 2.70 | 3.00 | 3.70 | 3.00 | 2.90 | 2.90 |
Dicalcium phosphate | 0.00 | 8.40 | 10.50 | 7.30 | 6.90 | 6.70 |
Lysine | 0.90 | 0.20 | 3.00 | 0.00 | 1.20 | 1.00 |
Soy lecithin | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
Fish oil | 38.90 | 42.30 | 45.40 | 37.60 | 40.40 | 40.00 |
Vitamin and mineral supplement 1 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
Common salt | 7.80 | 9.20 | 9.30 | 9.00 | 9.10 | 9.10 |
Magnesium sulfate | 0.00 | 2.80 | 2.80 | 2.80 | 2.80 | 2.80 |
Total | 1000.00 | 1000.00 | 1000.00 | 1000.00 | 1000.00 | 1000.00 |
Bromatological Composition 2 | ||||||
Dry matter (%) | 91.16 | 90.44 | 93.21 | 91.71 | 93.76 | 90.18 |
Crude protein (%) | 38.35 | 38.13 | 39.01 | 38.62 | 39.52 | 38.21 |
Ethereal extract (%) | 4.34 | 5.08 | 4.22 | 4.37 | 4.93 | 6.83 |
Ash (%) | 12.83 | 9.15 | 9.96 | 9.42 | 9.84 | 9.14 |
Crude energy (kcal kg−1) | 4400.00 | 4440.00 | 4380.00 | 4470.00 | 4360.00 | 4360.00 |
Treatment * | Final Weight (g) | Total Length (cm) | Antenna Length (cm) | Final Biomass (g) | Biomass Gain (g) | Survival (%) | Feed Conversion | Specific Growth Rate |
---|---|---|---|---|---|---|---|---|
T1 | 11.62 ± 2.40 | 9.86 ± 1.00 | 12.00 ± 3.40 a | 47.60 ± 8.70 | 40.83 ± 10.20 | 90.00 ± 12.00 | 1.31 ± 0.31 | 4.18 ± 0.14 |
T2 | 10.61 ± 1.34 | 9.75 ± 0.50 | 12.10 ± 4.20 a | 48.21 ± 11.50 | 41.44 ± 12.40 | 93.00 ± 10.00 | 1.23 ± 0.35 | 4.10 ± 0.13 |
T3 | 11.21 ± 1.85 | 9.71 ± 0.90 | 13.10 ± 2.60 ab | 50.67 ± 12.00 | 43.90 ± 13.20 | 93.00 ± 14.00 | 1.14 ± 0.40 | 4.17 ± 0.05 |
T4 | 9.70 ± 1.98 | 9.52 ± 1.00 | 12.30 ± 2.20 a | 45.30 ± 9.90 | 38.53 ± 11.00 | 90.00 ± 12.00 | 1.40 ± 0.56 | 3.98 ± 0.68 |
T5 | 11.42 ± 2.94 | 9.82 ± 1.20 | 15.20 ± 2.10 b | 45.87 ± 6.10 | 39.10 ± 3.80 | 80.00 ± 10.60 | 1.11 ± 0.11 | 4.00 ± 0.40 |
T6 | 10.75 ± 2.71 | 9.72 ± 1.10 | 15.10 ± 3.80 ab | 33.48 ± 4.00 | 26.71 ± 1.00 | 85.00 ± 11.00 | 1.51 ± 0.42 | 4.20 ± 0.14 |
Treatment * | Dry Matter (%) | Crude Protein (%) | Ethereal Extract (%) | Ash (%) | Crude Energy (kcal kg−1) |
---|---|---|---|---|---|
T1 | 19.14 ± 0.00 f | 14.98 ± 1.60 | 0.49 ± 0.25 a | 1.84 ± 0.28 a | 950.00 ± 18.21 |
T2 | 20.92 ± 0.01 e | 16.68 ± 0.90 | 0.44 ± 0.14 ab | 2.18 ± 0.12 ab | 1030.00 ± 27.53 |
T3 | 22.69 ± 0.00 c | 18.01 ± 1.00 | 0.61 ± 0.16 a | 2.47 ± 0.07 b | 1127.00 ± 116.98 |
T4 | 23.32 ± 0.00 a | 18.34 ± 0.69 | 0.49 ± 0.19 ab | 2.22 ± 0.01 b | 1165.00 ± 26.23 |
T5 | 21.62 ± 0.02 d | 17.09 ± 0.40 | 0.40 ± 0.02 b | 2.15 ± 0.09 a | 1076.00 ± 38.75 |
T6 | 23.08 ± 0.11 b | 18.24 ± 0.10 | 0.40 ± 0.07 b | 2.22 ± 0.06 b | 1124.00 ± 28.61 |
Treatment * | Amylase (U/L/mg Protein) | Cellulase (nmol/min/mg Protein) | Lipase (U/L/mg Protein) | Maltase (µmol/min/mg Protein) | Sucrase (µmol/min/mg Protein) | Trypsin (µmol/min/mg Protein) |
---|---|---|---|---|---|---|
T1 | 32.59 ± 6.05 ab | 0.17 ± 0.04 | 14.97 ± 1.37 | 1405.98 ± 239.55 | 380.82 ± 67.86 | 0.04 ± 0.01 ab |
T2 | 27.29 ± 4.39 a | 0.32 ± 0.04 | 14.76 ± 0.73 | 1537.42 ± 248.07 | 200.95 ± 61.79 | 0.05 ± 0.01 b |
T3 | 35.74 ± 11.85 ab | 0.21 ± 0.07 | 14.02 ± 0.94 | 1279.81 ± 113.11 | 422.99 ± 44.21 | 0.05 ± 0.01 b |
T4 | 46.47 ± 15.59 ab | 0.31 ± 0.18 | 15.62 ± 2.33 | 1098.34 ± 115.42 | 286.84 ± 53.24 | 0.02 ± 0.00 a |
T5 | 49.52 ± 9.26 b | 0.24 ± 0.08 | 13.81 ± 0.31 | 1120.58 ± 409.94 | 407.10 ± 153.42 | 0.03 ± 0.00 a |
T6 | 36.55 ± 3.13 ab | 0.27 ± 0.08 | 13.44 ± 0.78 | 1161.62 ± 171.74 | 361.28 ± 162.43 | 0.03 ± 0.00 a |
Treatment * | Total Hemolytic Cells |
---|---|
T1 | 9 × 106 ± 5 × 105 |
T2 | 10 × 106 ± 4 × 105 |
T3 | 10 × 106 ± 7 × 105 |
T4 | 11 × 106 ± 5 × 105 |
T5 | 12 × 106 ± 6 × 105 |
T6 | 11 × 106 ± 4 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrini, C.; do Nascimento Ferreira, C.H.; Kracizy, R.O.; Ferreira, R.L.; dos Santos, L.C.; Retcheski, M.C.; Mauerwerk, M.T.; Cazarolli, L.H.; Boscolo, W.R.; Cupertino Ballester, E.L. Different Protein Hydrolysates Can Be Used in the Penaeus vannamei (Boone, 1934) Diet as a Partial Replacement for Fish Meal during the Grow-Out Phase. Fishes 2024, 9, 73. https://doi.org/10.3390/fishes9020073
Negrini C, do Nascimento Ferreira CH, Kracizy RO, Ferreira RL, dos Santos LC, Retcheski MC, Mauerwerk MT, Cazarolli LH, Boscolo WR, Cupertino Ballester EL. Different Protein Hydrolysates Can Be Used in the Penaeus vannamei (Boone, 1934) Diet as a Partial Replacement for Fish Meal during the Grow-Out Phase. Fishes. 2024; 9(2):73. https://doi.org/10.3390/fishes9020073
Chicago/Turabian StyleNegrini, Celma, Caio Henrique do Nascimento Ferreira, Rafael Ortiz Kracizy, Rosane Lopes Ferreira, Luana Cardoso dos Santos, Milena Cia Retcheski, Marlise Teresinha Mauerwerk, Luisa Helena Cazarolli, Wilson Rogério Boscolo, and Eduardo Luis Cupertino Ballester. 2024. "Different Protein Hydrolysates Can Be Used in the Penaeus vannamei (Boone, 1934) Diet as a Partial Replacement for Fish Meal during the Grow-Out Phase" Fishes 9, no. 2: 73. https://doi.org/10.3390/fishes9020073
APA StyleNegrini, C., do Nascimento Ferreira, C. H., Kracizy, R. O., Ferreira, R. L., dos Santos, L. C., Retcheski, M. C., Mauerwerk, M. T., Cazarolli, L. H., Boscolo, W. R., & Cupertino Ballester, E. L. (2024). Different Protein Hydrolysates Can Be Used in the Penaeus vannamei (Boone, 1934) Diet as a Partial Replacement for Fish Meal during the Grow-Out Phase. Fishes, 9(2), 73. https://doi.org/10.3390/fishes9020073