Ex Situ Target Strength Measurements of Rockfish (Sebastes schlegeli) and Striped Beakperch (Oplegnathus fasciatus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Sample
2.2. Experimental System Setup and Data Analysis
3. Results
3.1. Length–Weight Relationship of Rockfish and Striped Beakperch
3.2. TS Based on the Tilt Angles of Rockfish and Striped Beakperch
3.3. TS Functional Expression Based on Length of Rockfish and Striped Beakperch
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Son, M.H.; Park, M.W.; Lim, H.K. An economic analysis of black rockfish, Sebastes schlegeli in marine floating cage culture. J. Fish. Bus. Admin. 2014, 45, 95–107. [Google Scholar] [CrossRef]
- Park, K.D.; Kang, Y.J. Age and growth of black rockfish Sebastes schlegeli in the Tongyeong marine ranching area in Korean waters. Korean J. Ichthyol. 2007, 19, 35–43. [Google Scholar]
- Nelson, J.S. Fish of the World, 4th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2006; 601p. [Google Scholar]
- Jang, C.I.; Kwon, W.; Kwon, H.C.; Kim, B.Y. Age and growth of striped beakperch Oplegnathus fasciatus in Jeju marine ranching area. Korean J. Ichthyol. 2013, 25, 25–32. [Google Scholar]
- Conti, S.G.; Roux, P.; Fauvel, C.; Maurer, B.D.; Demer, D.A. Acoustical monitoring of fish density, behavior, and growth rate in a tank. Aquaculture 2006, 251, 314–323. [Google Scholar] [CrossRef]
- Puig, V.; Espinosa, V.; Soliveres, E.; Ortega, A.; Belmonte, A.; Gándara, F. Biomass estimation of bluefin tuna in sea cages by the combined use of acoustic and optical techniques. Collect. Vol. Sci. Pap. ICCAT 2012, 68, 284–290. [Google Scholar]
- Puig-Pons, V.; Muñoz-Benavent, P.; Pérez-Arjona, I.; Ladino, A.; Llorens-Escrich, S.; Andreu-García, G.; Valiente-González, J.M.; Atienza-Vanacloig, V.; Ordóñez-Cebrián, P.; Pastor-Gimeno, J.I.; et al. Estimation of Bluefin Tuna (Thunnus thynnus) mean length in sea cages by acoustical means. Appl. Acoust. 2022, 197, 108960. [Google Scholar] [CrossRef]
- Love, R.H. Measurements of fish target strength: A review. Fish. Bull. 1971, 69, 703–715. [Google Scholar]
- Dickie, L.M.; Boudreau, P.R. Comparison of acoustic reflections from spherical objects and fish using a dual-beam echosounder. Can. J. Fish. Aquat. Sci. 1987, 44, 1915–1921. [Google Scholar] [CrossRef]
- Dunning, J.; Jansen, T.; Fenwick, A.J.; Fernandes, P.G. A new in-situ method to estimate fish target strength reveals high variability in broadband measurements. Fish. Res. 2023, 261, 106611. [Google Scholar] [CrossRef]
- Foote, K.G.; Knudsen, H.P.; Vestnes, G.; MacLennan, D.N.; Simmonds, E.J. Calibration of Acoustic Instruments for Fish Density Estimation: A Practical Guide; ICES Cooperative Research Reports (CRR): Copenhagen, Denmark, 1987; Volume 144, 69p. [Google Scholar]
- Ona, E. Physiological factors causing natural variations in acoustic target strength of fish. J. Mar. Biol. Assoc. UK 1990, 70, 107–127. [Google Scholar] [CrossRef]
- Simmonds, J.; MacLennan, D. Fisheries Acoustics: Theory and Practice, 2nd ed.; Blackwell Publishing: Hoboken, NJ, USA, 2005. [Google Scholar]
- MacLennan, D.N.; Simmonds, E.J. Fisheries Acoustics; Chapman & Hall: London, UK, 1992. [Google Scholar]
- Nakken, O.; Olsen, K. Target strength measurements of fish. Rapp. Procès-Verbaux Réunions 1977, 170, 52–69. [Google Scholar]
- Horne, J.K. The influence of ontogeny, physiology, and behaviour on the target strength of walleye pollock (Theragra chalcogramma). ICES J. Mar. Sci. 2003, 60, 1063–1074. [Google Scholar] [CrossRef]
- Holliday, D.V.; Pieper, R.E. Bio acoustical oceanography at high frequencies. ICES J. Mar. Sci. 1995, 52, 279–296. [Google Scholar] [CrossRef]
- Mukai, T.; Iida, K. Depth dependence of target strength of live kokanee salmon in accordance with Boyle’s law. ICES J. Mar. Sci. 1996, 53, 245–248. [Google Scholar] [CrossRef]
- Foote, K.G. Importance of the swim bladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths. J. Acoust. Soc. Am. 1980, 67, 2084–2089. [Google Scholar] [CrossRef]
- Yasuma, H.; Nakagawa, R.; Yamakawa, T.; Miyashita, K.; Aoki, I. Density and sound-speed contrasts, and target strength of Japanese sandeel Ammodytes personatus. Fish. Sci. 2009, 75, 545–552. [Google Scholar] [CrossRef]
- Sawada, K. Study on the precise estimation of the target strength of fish. Boll. Fish. Res. Agency 2002, 11, 47–122. [Google Scholar]
- Kang, D.; Sadayasu, K.; Mukai, T.; Iida, K.; Hwang, D.; Sawada, K.; Miyashita, K. Target strength estimation of black porgy Acanthopagrus schlegeli using acoustic measurements and a scattering model. Fish. Sci. 2004, 70, 819–828. [Google Scholar] [CrossRef]
- Thomas, G.L.; Kirsch, J.; Thorne, R.E. Ex situ Target strength measurements of Pacific herring and Pacific sand lance. N. Am. J. Fish. Manag. 2002, 22, 1136–1145. [Google Scholar] [CrossRef]
- Zhu, Y.; Mizutani, K.; Minami, K.; Shirakawa, H.; Kawauchi, Y.; Shao, H.; Tomiyasu, M.; Iwahara, Y.; Tamura, T.; Ogawa, M.; et al. Target strength measurements of free-swimming sandeel species, Ammodytes spp., in a large indoor experimental aquarium. J. Mar. Sci. Eng. 2022, 10, 966. [Google Scholar] [CrossRef]
- Yoon, E.; Lee, H.; Park, C.; Lee, Y.D.; Hwang, K.; Kim, D.N. Ex situ target strength of yellow croaker (Larimichthys polyactis) in a seawater tank. Fish. Res. 2023, 260, 106610. [Google Scholar] [CrossRef]
- Barange, M.; Hampton, I.; Soule, M. Empirical determination of in situ target strengths of three loosely aggregated pelagic fish species. ICES J. Mar. Sci. 1996, 53, 225–232. [Google Scholar] [CrossRef]
- Didrikas, T.; Hansson, S. In situ target strength of the Baltic Sea herring and sprat. ICES J. Mar. Sci. 2004, 61, 378–382. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Dai, F. Depth-dependent target strength of anchovy (Engraulis japonicus) measured in situ. ICES J. Mar. Sci. 2008, 65, 882–888. [Google Scholar] [CrossRef]
- Lee, D.J. Fish length dependence of target strength for striped beakperch, bluefin sea robin and konoshiro gizzard shad caught in the artificial reef ground of Yongho Man, Busan. J. Korean Soc. Fish. Ocean Technol. 2010, 46, 239–247. [Google Scholar] [CrossRef]
- Jakobsen, T.; Korsbrekke, K.; Mehl, S.; Nakken, O. Norwegian Combined Acoustic and Bottom Trawl Surveys for Demersal Fish in the Barents Sea during Winter; ICES: Copenhagen, Denmark, 1997; Volume 17, 26p. [Google Scholar]
- Hoffman, J.C.; Bonzek, C.F.; Latour, R.J. Estimation of Bottom Trawl Catch Efficiency for Two Demersal Fishes, the Atlantic Croaker and White Perch, in Chesapeake Bay. Mar. Coast. Fish. 2009, 1, 255–269. [Google Scholar] [CrossRef]
- Doray, M.; Mahévas, S.; Trenkel, V.M. Estimating gear efficiency in a combined acoustic and trawl survey, with reference to the spatial distribution of demersal fish. ICES J. Mar. Sci. 2010, 67, 668–676. [Google Scholar] [CrossRef]
- Hamuna, B.; Pujiyatf, S.; Dimara, L.; Natief, N.M.N.; Alianto, A. Distribution and density of demersal fishes in Youtefa Bay, Papua, Indonesia: A study using hydroacoustic technology. India J. Fish. 2020, 67, 30–35. [Google Scholar] [CrossRef]
- Gauthier, S.; Rose, G.A. In situ target strength studies on Atlantic redfish (Sebastes spp.). ICES J. Mar. Sci. 2002, 59, 805–815. [Google Scholar] [CrossRef]
- Macaulay, G.J.; Kloser, R.J.; Ryan, T.E. In situ target strength estimates of visually verified orange roughy. ICES J. Mar. Sci. 2013, 70, 215–222. [Google Scholar] [CrossRef]
- Kang, D.H.; Hwang, D.J. Ex situ target strength of rockfish (Sebastes schlegeli) and red sea bream (Pagrus major) in the northwest Pacific. ICES J. Mar. Sci. 2003, 60, 538–543. [Google Scholar] [CrossRef]
- Mun, J.H.; Lee, D.J.; Hi, S.; Lee, Y.W. Fish length dependence of target strength for black rockfish, goldeye rockfish at 70 kHz and 120 kHz. J. Korean Soc. Fish. Ocean Technol. 2006, 40, 30–37. [Google Scholar] [CrossRef]
- Yoon, E.; Kim, K.; Lee, I.; Jo, H.J.; Lee, K. Target strength estimation by tilt angle and size dependence of rockfish (Sebastes schlegeli) using ex-situ and acoustic scattering model. J. Korean Soc. Fish. Ocean Technol. 2017, 53, 152–159. [Google Scholar] [CrossRef]
- Trevorrow, M.V. Boundary scattering limitations to fish detection in shallow waters. Fish. Res. 1998, 35, 127–135. [Google Scholar] [CrossRef]
- Demer, D.A.; Berger, L.; Bernasconi, M.; Bethke, E.; Boswell, K.; Chu, D.; Domokos, R. Calibration of Acoustic Instruments; ICES Cooperative Research Report; International Council for the Exploration of the Sea (ICES): Copenhagen, Denmark, 2015; Volume 133. [Google Scholar]
- Ricker, W.E. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 1975, 191, 1–382. [Google Scholar]
- Im, Y.; Hwang, S.D. Age and growth of black rockfish, Sebastes schlegeli, in West. Coast. Waters Korea Korean J. Ichthyol. 2002, 14, 143–152. [Google Scholar]
- Wang, L.; Wu, Z.; Liu, M.; Liu, W.; Zhao, W.; Liu, H.; Zhang, P.; You, F. Length-weight, length-length relationships, and condition factors of black rockfish Sebastes schlegelii Hilgendorf, 1880 in Lidao Bay, China. Thalassas 2017, 33, 57–63. [Google Scholar] [CrossRef]
- Karakulak, F.S.; Erk, H.; Bilgin, B. Length-weight relationships for 47 coastal fish species from the northern Aegean Sea, Turkey. J. Appl. Ichthyol. 2006, 22, 274–278. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, Y.; Lee, J.H.; Yoon, S.C. Length-weight relationships for 27 fish species from Southern Sea in Korea. Korean J. Fish. Aquat. Sci. 2020, 53, 790–793. [Google Scholar]
- Knudsen, F.; Fosseidengen, J.; Oppedal, F.; Karlsen, Ø.; Ona, E. Hydroacoustic monitoring of fish in sea cages: Target strength (ts) measurements on Atlantic salmon (Salmo salar). Fish. Res. 2004, 69, 205–209. [Google Scholar] [CrossRef]
- Park, G.; Oh, W.; Oh, S.; Lee, K. Acoustic scattering characteristics of chub mackerel (Scomber japonicus) by KRM model. J. Korean Soc. Fish. Ocean Technol. 2022, 58, 32–38. [Google Scholar] [CrossRef]
- Choi, J.H.; Oh, W.S.; Yoon, E.; Im, Y.J.; Lee, K. Target strength according to tilt angle and length of black seabream Acanthopagrus schlegeli at 200 kHz-frequency. Korean J. Fish. Aquat. Sci. 2018, 51, 566–570. [Google Scholar]
- Kloser, R.J.; Horne, J.K. Characterizing uncertainty in target-strength measurements of a deepwater fish: Orange roughy (Hoplostethus atlanticus). ICES J. Mar. Sci. 2003, 60, 516–523. [Google Scholar] [CrossRef]
- Yasuma, H.; Sawada, K.; Takao, Y.; Miyashita, K.; Aoki, I. Swimbladder condition and target strength of myctophid fish in the temperate zone of the northwest Pacific. ICES J. Mar. Sci. 2010, 67, 135–144. [Google Scholar] [CrossRef]
- Hwang, K.S.; Lee, K.H.; Hwang, B.K. Verification and application of target strength for Japanese anchovy (Engraulis japonicas) by theoretical acoustic scattering model. J. Korean Soc. Fish. Ocean Technol. 2012, 48, 487–494. [Google Scholar] [CrossRef]
- Hwang, B.K. Morphological properties and target strength characteristics for dark banded rockfish (Sebastes inermis). J. Korean Soc. Fish. Technol 2015, 51, 120–127. [Google Scholar] [CrossRef]
- Hwang, K.S.; Yoon, E.A.; Lee, K.H.; Lee, H.B.; Hwang, D.J. Multifrequency acoustic scattering characteristics of jack mackerel by KRM model. J. Korean Soc. Fish. Ocean Technol. 2015, 51, 424–431. [Google Scholar] [CrossRef]
- Kim, H.; Kang, D.; Cho, S.; Kim, M.; Park, J.; Kim, K. Acoustic target strength measurements for biomass estimation of aquaculture fish, Redlip mullet (Chelon haematocheilus). Appl. Sci. 2018, 8, 1536. [Google Scholar] [CrossRef]
- Oh, S.; An, J. Studies on Dorsal Aspect Target Strengths of Rock Bream, Oplegnathus Fasciatus and Dusky Spinefoot, Siganus Fuscescens. Fish. Ocean Technol. 2001, 37, 133–139. [Google Scholar]
- Sobradillo, B.; Boyra, G.; Martinez, U.; Carrera, P.; Peña, M.; Irigoien, X. Target Strength and swim-bladder morphology of Mueller’s pearlside. Sci. Rep. 2019, 9, 17311. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Two-way beam angle (dB) | −20.70 |
Transducer gain (dB) | 26.24 |
3 dB beam angle (athwart/along) (deg.) | 6.61/6.58 |
Absorption coefficient (dB km−1) | 6.40 |
Sound speed (m s−1) | 1506.7 |
Power (W) | 105 |
Pulse length (ms) | 0.512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, E.; Oh, W.-S.; Lee, K. Ex Situ Target Strength Measurements of Rockfish (Sebastes schlegeli) and Striped Beakperch (Oplegnathus fasciatus). Fishes 2024, 9, 371. https://doi.org/10.3390/fishes9100371
Yoon E, Oh W-S, Lee K. Ex Situ Target Strength Measurements of Rockfish (Sebastes schlegeli) and Striped Beakperch (Oplegnathus fasciatus). Fishes. 2024; 9(10):371. https://doi.org/10.3390/fishes9100371
Chicago/Turabian StyleYoon, Euna, Woo-Seok Oh, and Kyounghoon Lee. 2024. "Ex Situ Target Strength Measurements of Rockfish (Sebastes schlegeli) and Striped Beakperch (Oplegnathus fasciatus)" Fishes 9, no. 10: 371. https://doi.org/10.3390/fishes9100371
APA StyleYoon, E., Oh, W. -S., & Lee, K. (2024). Ex Situ Target Strength Measurements of Rockfish (Sebastes schlegeli) and Striped Beakperch (Oplegnathus fasciatus). Fishes, 9(10), 371. https://doi.org/10.3390/fishes9100371