Toxic Effects of Tetramethyl Bisphenol A on Embryonic–Larval Development of Zebrafish (Danio rerio)
Abstract
1. Introduction
2. Materials and Methods
2.1. Embryo Collection and TMBPA Exposure
2.2. Behavior Test
2.3. Morphologic Observation and Full-Length Measurement
2.4. Total RNA Isolation and Transcriptional Expression Analysis
2.5. Statistical Analysis
3. Results
3.1. Effects of TMBPA Exposure on Survival and Growth of Zebrafish Embryo-Larvae
3.2. TMBPA Exposure Causes Developmental Abnormalities in Zebrafish Larvae
3.3. Effects of TMBPA Exposure on Larval Swimming Behavior
3.4. Effects of TMBPA on Expression of Antioxidant System-Related Genes in Zebrafish Larvae
3.5. Effects of TMBPA on Expression of HPT Axis-Related Genes in Zebrafish Larvae
3.6. Effects of TMBPA Exposure on Expression of Cardiac Development-Related Genes in Zebrafish Larvae
3.7. Effects of TMBPA Exposure on the HPA Axis-Related Genes in Zebrafish Larvae
4. Discussion
4.1. TMBPA Exposure Impacts the Hatching Rate, Survival Rate, Malformations, and Locomotor Activity in Zebrafish During Embryonic-to-Larval Developmental Stages
4.2. TMBPA Exposure Affects the Antioxidant Capacity in Zebrafish Larvae
4.3. TMBPA Exposure Affects Thyroid Function in Zebrafish Larvae
4.4. TMBPA Exposure Affects Cardiac Development in Zebrafish Larvae
4.5. TMBPA Affects the Function of Hypothalamus–Pituitary–Adrenal Axis in Zebrafish Larvae
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Xing, J.; Zhang, S.; Zhang, M.; Hou, J. A critical review of presence, removal and potential impacts of endocrine disruptors bisphenol A. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 254, 109275. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Iacovidou, E.; Gerassimidou, S. An overview of the occurrence, fate, and human risks of the bisphenol-A present in plastic materials, components, and products. Integr. Environ. Assess. Manag. 2023, 19, 45–62. [Google Scholar] [CrossRef] [PubMed]
- Liguori, F.; Moreno-Harridan, C.; Barbaro, P. Biomass-derived chemical substitutes for bisphenol A: Recent advancements in catalytic synthesis. Chem. Soc. Rev. 2020, 49, 6329–6363. [Google Scholar] [CrossRef] [PubMed]
- Mustieles, V.; D’Cruz, S.C.; Couderq, S.; Rodríguez-Carrillo, A.; Fini, J.B.; Hofer, T.; Steffensen, I.L.; Dirven, H.; Barouki, R.; Olea, N.; et al. Bisphenol A and its analogues: A comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. Environ. Int. 2020, 144, 105811. [Google Scholar] [CrossRef] [PubMed]
- Reis, L.D.P.G.; Lora-Benítez, A.J.; Molina-López, A.M.; Mora-Medina, R.; Ayala-Soldado, N.; Moyano-Salvago, M.D.R. Evaluation of the toxicity of Bisphenol A in reproduction and its effect on fertility and embryonic development in the zebrafish (Danio rerio). Int. J. Environ. Res. Public Health 2022, 19, 962. [Google Scholar] [CrossRef]
- Huelsmann, R.D.; Will, C.; Carasek, E. Determination of bisphenol A: Old problem, recent creative solutions based on novel materials. J. Sep. Sci. 2021, 44, 1148–1173. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, J.L.; Yang, Y.Y.; Jia, Y.W.; Zhang, Q.Q.; Chen, C.E.; Liu, Y.S.; Yang, B.; Xie, L.T.; Ying, G.G. Occurrence, mass loads and risks of bisphenol analogues in the Pearl River Delta region, South China: Urban rainfall runoff as a potential source for receiving rivers. Environ. Pollut. 2020, 263, 114361. [Google Scholar] [CrossRef]
- Cimmino, I.; Fiory, F.; Perruolo, G.; Miele, C.; Beguinot, F.; Formisano, P.; Oriente, F. Potential mechanisms of bisphenol A (BPA) contributing to human disease. Int. J. Mol. Sci. 2020, 21, 5761. [Google Scholar] [CrossRef]
- Li, X.; Meng, F.; Ye, L.; Qiao, X.; Li, J.; Tian, L.; Su, M.; Lin, L.; Ge, R.; Wang, Y. Tetramethyl bisphenol A stimulates proliferation but inhibits fetal Leydig cell function in male rats by targeting estrogen receptor α after in utero exposure. Environ. Toxicol. 2022, 37, 2743–2755. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, H.; Wu, J.; Yuan, L.; Wang, Y.; Du, X.; Wang, R.; Marwa, P.W.; Petlulu, P.; Chen, X.; et al. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ. Res. 2019, 176, 108575. [Google Scholar] [CrossRef]
- Banaderakhshan, R.; Kemp, P.; Breul, L.; Steinbichl, P.; Hartmann, C.; Fürhacker, M. Bisphenol A and its alternatives in Austrian thermal paper receipts, and the migration from reusable plastic drinking bottles into water and artificial saliva using UHPLC-MS/MS. Chemosphere 2022, 286, 131842. [Google Scholar] [CrossRef]
- Catenza, C.J.; Farooq, A.; Shubear, N.S.; Donkor, K.K. A targeted review on fate, occurrence, risk and health implications of bisphenol analogues. Chemosphere 2021, 268, 129273. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Qin, G.; Qian, N.; Zeng, X.; Li, R.; Lai, K.P. Bisphenol A and its replacement chemicals as endocrine disruptors and obesogens. Environ. Chem. Ecotox. 2025, 7, 696–705. [Google Scholar] [CrossRef]
- Qian, S.K.; Lv, H.; Qiao, W.H.; Hu, Z.Y.; Shen, J.Z.; Cao, G.P. Catalytic performance and mechanism of dual-functional mesoporous catalyst in the synthesis of tetramethyl bisphenol A. J. Mater. Sci. 2025, 60, 9529–9549. [Google Scholar] [CrossRef]
- Kitamura, S.; Suzuki, T.; Sanoh, S.; Kohta, R.; Jinno, N.; Sugihara, K.; Yoshihara, S.; Fujimoto, N.; Watanabe, H.; Ohta, S. Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicol. Sci. 2005, 84, 249–259. [Google Scholar] [CrossRef]
- Pelch, K.E.; Li, Y.; Perera, L.; Thayer, K.A.; Korach, K.S. Characterization of estrogenic and androgenic activities for bisphenol A-like chemicals (BPs): In vitro estrogen and androgen receptors transcriptional activation, gene regulation, and binding profiles. Toxicol. Sci. 2019, 172, 23–37. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Chen, Y.; Song, X.; Chen, X.; Zhang, N.; Li, H.; Guo, Y.; Wang, Z.; Dong, Z. Long-term exposure to bisphenol A and its analogues alters the behavior of marine medaka (Oryzias melastigma) and causes hepatic injury. Sci. Total Environ. 2022, 841, 156590. [Google Scholar] [CrossRef]
- Hu, D.; Tian, L.; Li, X.; Chen, Y.; Xu, Z.; Ge, R.S.; Wang, Y. Tetramethyl bisphenol a inhibits leydig cell function in late puberty by inducing ferroptosis. Ecotoxicol. Environ. Saf. 2022, 236, 113515. [Google Scholar] [CrossRef] [PubMed]
- Beg, M.A.; Sheikh, I.A. Endocrine disruption: Molecular interactions of environmental bisphenol contaminants with thyroid hormone receptor and thyroxine-binding globulin. Toxicol. Ind. Health 2020, 36, 322–335. [Google Scholar] [CrossRef]
- Song, Z.; Qiu, Y.; Zhang, H.; Zhu, Z.; Yin, D.; Zhao, J. The occurrence and research progress of bisphenol analogues in aquatic environment. Environ. Chem. 2020, 39, 1496–1503. [Google Scholar]
- Tian, S.; Yan, S.; Meng, Z.; Huang, S.; Sun, W.; Jia, M.; Teng, M.; Zhou, Z.; Zhu, W. New insights into bisphenols induced obesity in zebrafish (Danio rerio): Activation of cannabinoid receptor CB1. J. Hazard. Mater. 2021, 418, 126100. [Google Scholar] [CrossRef]
- Song, S.; Ruan, T.; Wang, T.; Liu, R.; Jing, G. Distribution and Preliminary Exposure Assessment of Bisphenol AF (BPAF) in Various Environmental Matrices around a Manufacturing Plant in China. Environ. Sci. Technol. 2012, 46, 13136–13143. [Google Scholar] [CrossRef] [PubMed]
- Faheem, M.; Bhandari, R.K. Detrimental effects of bisphenol compounds on physiology and reproduction in fish: A literature review. Environ. Toxicol. Pharmacol. 2021, 81, 103497. [Google Scholar] [CrossRef]
- Flint, S.; Markle, T.; Thompson, S.; Wallace, E. Bisphenol A exposure, effects, and policy: A wildlife perspective. J. Environ. Manag. 2012, 104, 19–34. [Google Scholar] [CrossRef]
- Moreman, J.; Lee, O.; Trznadel, M.; David, A.; Kudoh, T.; Tyler, C.R. Acute toxicity, teratogenic, and estrogenic effects of bisphenol A and its alternative replacements bisphenol S, bisphenol F, and bisphenol AF in zebrafish embryo-larvae. Environ. Sci. Technol. 2017, 51, 12796–12805. [Google Scholar] [CrossRef]
- Yao, F.; Li, Y.; Ru, H.; Wu, L.; Xiao, Z.; Ni, Z.; Chen, D.; Zhong, L. Thyroid disruption and developmental toxicity caused by triphenyltin (TPT) in zebrafish embryos/larvae. Toxicol. Appl. Pharmacol. 2020, 394, 114957. [Google Scholar] [CrossRef]
- Jiang, J.; Lv, L.; Wu, S.; An, X.; Wang, F.; Liu, X.; Zhao, X. Developmental toxicity of kresoxim-methyl during zebrafish (Danio rerio) larval development. Chemosphere 2019, 219, 517–525. [Google Scholar] [CrossRef]
- Yang, M.; Luan, J.; Xu, Y.; Zhao, C.; Sun, M.; Feng, X. Cardiotoxicity of zebrafish induced by 6-benzylaminopurine exposure and its mechanism. Int. J. Mol. Sci. 2022, 23, 8438. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Chen, L.; Liang, Q.; Lai, Z.; Cui, H.; Xu, Z.; Chen, Z.; Dong, Z.; Wang, Z.; Guo, Y. Systematic selection of suitable reference genes for quantitative real-time PCR normalization studies of gene expression in Lutjanus erythropterus. Sci. Rep. 2024, 14, 13323. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, E.O.; Rahman, M.S.; Pang, M.G. Bisphenols threaten male reproductive Health via testicular cells. Front. Endocrinol. 2020, 11, 624. [Google Scholar] [CrossRef]
- Lee, S.; Kim, C.; Shin, H.; Kho, Y.; Choi, K. Comparison of thyroid hormone disruption potentials by bisphenols A, S, F, and Z in embryo-larval zebrafish. Chemosphere 2019, 221, 115–123. [Google Scholar] [CrossRef]
- Siracusa, J.S.; Yin, L.; Measel, E.; Liang, S.; Yu, X. Effects of bisphenol A and its analogs on reproductive health: A mini review. Reprod. Toxicol. 2018, 79, 96–123. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, S.S.; Park, B.H.; Hwang, K.S.; Bae, M.A.; Cho, S.H.; Kim, S.; Park, H.C. Mechanism of bisphenol F affecting motor system and motor activity in zebrafish. Toxics 2023, 11, 477. [Google Scholar] [CrossRef]
- Huang, Z.; Gao, J.; Chen, Y.; Huan, Z.; Liu, Y.; Zhou, T.; Dong, Z. Toxic effects of bisphenol AF on the embryonic development of marine medaka (Oryzias melastigma). Environ. Toxicol. 2023, 38, 1445–1454. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Deng, J.; Gu, J.; Yang, J.; Ge, F.; Huang, C.; Wu, W. TMBPF-induced neurotoxicity and oxidative stress in zebrafish larvae: Impacts on central nervous system development and dopamine neurons. Ecotoxicol. Environ. Saf. 2023, 268, 115710. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Wang, H.; Zhou, L.; Fan, D.; Shi, L.; Ji, G.; Gu, A. Oxidative stress in bisphenol AF-induced cardiotoxicity in zebrafish and the protective role of N-acetyl N-cysteine. Sci. Total Environ. 2020, 731, 139190. [Google Scholar] [CrossRef] [PubMed]
- Berg, E.M.; Björnfors, E.R.; Pallucchi, I.; Picton, L.D.; El Manira, A. Principles governing locomotion in vertebrates: Lessons from zebrafish. Front. Neural Circuit. 2018, 12, 73. [Google Scholar] [CrossRef]
- Gu, J.; Wu, J.; Xu, S.; Zhang, L.; Fan, D.; Shi, L.; Wang, J.; Ji, G. Bisphenol F exposure impairs neurodevelopment in zebrafish larvae (Danio rerio). Ecotoxicol. Environ. Saf. 2020, 188, 109870. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, T.; Chen, X.; Huan, Z.; Huang, J.; Lu, S.; Zeng, M.; Guo, Y.; Wang, Z.; Dong, Z. Toxic effects of chronic exposure to BPAF and perturbation of gut microbiota homeostasis in marine medaka (Oryzias melastigma). Sci. Total Environ. 2024, 957, 177745. [Google Scholar] [CrossRef]
- Salahinejad, A.; Naderi, M.; Attaran, A.; Meuthen, D.; Niyogi, S.; Chivers, D.P. Effects of chronic exposure to bisphenol-S on social behaviors in adult zebrafish: Disruption of the neuropeptide signaling pathways in the brain. Environ. Pollut. 2020, 262, 113992. [Google Scholar] [CrossRef]
- D Autréaux, B.; Toledano, M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 2007, 8, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Raza, G.A.; Ghaffar, A.; Hussain, R.; Jamal, A.; Ahmad, Z.; Mohamed, B.B.; Aljohani, A.S. Nuclear and morphological alterations in erythrocytes, antioxidant enzymes, and genetic disparities induced by brackish water in mrigal carp (Cirrhinus mrigala). Oxidative Med. Cell. Longev. 2022, 2022, 4972622. [Google Scholar] [CrossRef] [PubMed]
- Freyre, E.O.; Valencia, A.T.; Guzmán, D.D.; Maldonado, I.C.; Ledezma, L.E.B.; Carrillo, M.F.; Escorza, M.A.Q. Oxidative stress as a molecular mechanism of exposure to organophosphorus pesticides: A review. Curr. Protein Pept. Sci. 2021, 22, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Pu, C.; Liu, Y.; Wang, L.; Ma, J.; Lv, H.; Song, J.; Zhang, C. Exploring the mechanism of intestinal injury induced by Bisphenol S in freshwater crayfish (Procambarus clarkii): Molecular and biochemical approaches. Aquat. Toxicol. 2024, 274, 107035. [Google Scholar] [CrossRef]
- Yazdani, M.; Andresen, A.M.S.; Gjøen, T. Short-term effect of bisphenol-a on oxidative stress responses in Atlantic salmon kidney cell line: A transcriptional study. Toxicol. Mech. Method. 2016, 26, 295–300. [Google Scholar] [CrossRef]
- Salahinejad, A.; Attaran, A.; Naderi, M.; Meuthen, D.; Niyogi, S.; Chivers, D.P. Chronic exposure to bisphenol S induces oxidative stress, abnormal anxiety, and fear responses in adult zebrafish (Danio rerio). Sci. Total Environ. 2021, 750, 141633. [Google Scholar] [CrossRef]
- Salahinejad, A. Neurobehavioural Toxicity of Bisphenol S in Zebrafish (Danio rerio). Ph.D. Thesis, University of Saskatchewan, Saskatchewan, SK, Canada, 2022. [Google Scholar]
- Jiang, X.; Xing, X.; Zhang, Y.; Zhang, C.; Wu, Y.; Chen, Y.; Meng, R.; Jia, H.; Cheng, Y.; Zhang, Y.; et al. Lead exposure activates the Nrf2/Keap1 pathway, aggravates oxidative stress, and induces reproductive damage in female mice. Ecotoxicol. Environ. Saf. 2021, 207, 111231. [Google Scholar] [CrossRef]
- Nesci, S.; Rubattu, S. UCP2, a member of the mitochondrial uncoupling proteins: An overview from physiological to pathological roles. Biomedicines 2024, 12, 1307. [Google Scholar] [CrossRef]
- Wang, J.Q.; Hussain, R.; Ghaffar, A.; Afzal, G.; Saad, A.Q.; Ahmad, N.; Nazir, U.; Ahmad, H.I.; Hussain, T.; Khan, A. Clinicohematological, mutagenic, and oxidative stress induced bypendimethalin infreshwater fishbighead carp (Hypophthalmichthys nobilis). Oxidative Med. Cell. Longev. 2022, 2022, 2093822. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Wang, Q.; Lv, M.; Zhao, X.; Ji, Y.; Han, X.; Wang, X.; Chen, L. Thecombined toxic effects of polyvinyl chloride microplastics anddi(2-ethylhexyl) phthalate onthejuvenile zebrafish (Danio rerio). J. Hazard. Mater. 2022, 440, 129711. [Google Scholar] [CrossRef]
- Jugan, M.L.; Levi, Y.; Blondeau, J.P. Endocrine disruptors and thyroid hormone physiology. Biochem. Pharmacol. 2010, 79, 939–947. [Google Scholar] [CrossRef]
- Kwon, B.; Kho, Y.; Kim, P.G.; Ji, K. Thyroid endocrine disruption in male zebrafish following exposure to binary mixture of bisphenol AF and sulfamethoxazole. Environ. Toxicol. Pharmacol. 2016, 48, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Blanton, M.L.; Specker, J.L. The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction. Crit. Rev. Toxicol. 2007, 37, 97–115. [Google Scholar] [CrossRef]
- Deal, C.K.; Volkoff, H. The role of the thyroid axis in fish. Front. Endocrinol. 2020, 11, 596585. [Google Scholar] [CrossRef]
- Tang, T.; Yang, Y.; Chen, Y.; Tang, W.; Wang, F.; Diao, X. Thyroid disruption in zebrafish larvae by short-term exposure to bisphenol AF. Int. J. Environ. Res. Public Health 2015, 12, 13069–13084. [Google Scholar] [CrossRef]
- Power, D.M.; Elias, N.P.; Richardson, S.J.; Mendes, J.; Soares, C.M.; Santos, C.R.A. Evolution of the thyroid hormone-binding protein, transthyretin. Gen. Comp. Endocrinol. 2000, 119, 241–255. [Google Scholar] [CrossRef]
- Kim, S.; Jung, J.; Lee, I.; Jung, D.; Youn, H.; Choi, K. Thyroid disruption by triphenyl phosphate, an organophosphate flame retardant, in zebrafish (Danio rerio) embryos/larvae, and in GH3 and FRTL-5 cell lines. Aquat. Toxicol. 2015, 160, 188–196. [Google Scholar] [CrossRef]
- Liu, Y.W.; Lo, L.J.; Chan, W.K. Temporal expression and T3 induction of thyroid hormone receptors α1 and β1 during early embryonic and larval development in zebrafish, Danio rerio. Mol. Cell Endocrinol. 2000, 159, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Glickman, N.S.; Yelon, D. Cardiac development in zebrafish: Coordination of form and function. Semin. Cell Dev. Biol. 2002, 13, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.R.; Green, J.M.; Moreman, J.; Gunnarsson, L.M.; Mourabit, S.; Ball, J.; Winter, M.J.; Trznadel, M.; Correia, A.; Hacker, C.; et al. Cardiovascular effects and molecular mechanisms of bisphenol A and its metabolite MBP in zebrafish. Environ. Sci. Technol. 2018, 53, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Milan, D.J.; Giokas, A.C.; Serluca, F.C.; Peterson, R.T.; MacRae, C.A. Notch1b and neuregulin are required for specification of central cardiac conduction tissue. Development 2006, 133, 1125–1132. [Google Scholar] [CrossRef]
- Li, Y.; Du, J.; Deng, S.; Liu, B.; Jing, X.; Yan, Y.; Liu, Y.; Wang, J.; Zhou, X.; She, Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct. Target. Ther. 2024, 9, 368. [Google Scholar] [CrossRef]
- Aanhaanen, W.T.; Brons, J.F.; Domínguez, J.N.; Rana, M.S.; Norden, J.; Airik, R.; Wakker, V.; Vries, C.G.; Brown, N.A.; Kispert, A.; et al. The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ. Res. 2009, 104, 1267–1274. [Google Scholar] [CrossRef]
- Singh, R.; Hoogaars, W.M.; Barnett, P.; Grieskamp, T.; Rana, M.S.; Buermans, H.; Farin, H.F.; Petry, M.; Heallen, T.; Martin, J.F.; et al. Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation. Cell. Mol. Life. Sci. 2012, 69, 1377–1389. [Google Scholar] [CrossRef]
- Anfinson, M.; Fitts, R.H.; Lough, J.W.; James, J.M.; Simpson, P.M.; Handler, S.S.; Mitchell, M.E.; Tomita-Mitchell, A. Significance of α-Myosin Heavy Chain (MYH6) variants in hypoplastic left heart syndrome and related cardiovascular diseases. J. Cardiovasc. Dev. Dis. 2022, 9, 144. [Google Scholar] [CrossRef]
- Berdougo, E.; Coleman, H.; Lee, D.H.; Stainier, D.Y.; Yelon, D. Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish. Development 2003, 130, 6121–6129. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Guo, X.; Yu, P.; Liang, J.; Mo, Z.; Zhang, M.; Yang, L.; Huang, X.; Hu, B.; Liu, J.; et al. Vasorin deficiency leads to cardiac hypertrophy by targeting MYL7 in young mice. J. Cell. Mol. Med. 2022, 26, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Lucitti, J.L.; Jones, E.A.; Huang, C.; Chen, J.; Fraser, S.E.; Dickinson, M.E. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 2007, 134, 3317–3326. [Google Scholar] [CrossRef]
- Huang, M.; Jiao, J.; Wang, J.; Xia, Z.; Zhang, Y. Exposure to acrylamide induces cardiac developmental toxicity in zebrafish during cardiogenesis. Environ. Pollut. 2018, 234, 656–666. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, C.; Jin, X.; He, J.; Yin, Z. Domestication of farmed fish via the attenuation of stress responses mediated by the hypothalamus–pituitary–inter-renal endocrine axis. Front. Endocrinol. 2022, 13, 923475. [Google Scholar] [CrossRef]
- Tsalafouta, A.; Papandroulakis, N.; Gorissen, M.; Katharios, P.; Flik, G.; Pavlidis, M. Ontogenesis of the HPI axis and molecular regulation of the cortisol stress response during early development in Dicentrarchus labrax. Sci. Rep. 2014, 4, 5525. [Google Scholar] [CrossRef]
- Li, Z.; Robaire, B. Effects of endocrine-disrupting chemicals on adrenal function. Endocrinology 2025, 166, bqaf045. [Google Scholar] [CrossRef] [PubMed]
- Alderman, S.L.; Bernier, N.J. Ontogeny of the corticotropin-releasing factor system in zebrafish. Gen. Comp. Endocrinol. 2009, 164, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Alsop, D.; Vijayan, M.M. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am. J. Physiol Regul. Integr. Comp. Physiol. 2008, 294, R711–R719. [Google Scholar] [CrossRef]
- Nesan, D.; Vijayan, M.M. Role of glucocorticoid in developmental programming: Evidence from zebrafish. Gen. Comp. Endocrinol. 2013, 181, 35–44. [Google Scholar] [CrossRef]
- Schaaf, M.J.M.; Chatzopoulou, A.; Spaink, H.P. The zebrafish as a model system for glucocorticoid receptor research. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 153, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Zhao, F.; Zhang, X.; Ru, X. Long-term exposure of zebrafish to bisphenol S impairs stress function of hypothalamic-pituitary-interrenal axis and causes anxiety-like behavioral responses to novelty. Sci. Total Environ. 2020, 716, 137092. [Google Scholar] [CrossRef]
- Hansen, I.A.; To, T.T.; Wortmann, S.; Burmester, T.; Winkler, C.; Meyer, S.R.; Neuner, C.; Fassnacht, M.; Allolio, B. The pro-opiomelanocortin gene of the zebrafish (Danio rerio). Biochem. Biophys. Res. Commun. 2003, 303, 1121–1128. [Google Scholar] [CrossRef]
- Nesan, D.; Vijayan, M.M. Maternal cortisol mediates hypothalamus-pituitary-interrenal axis development in zebrafish. Sci. Rep. 2016, 6, 22582. [Google Scholar] [CrossRef]
- Wagle, M.; Mathur, P.; Guo, S. Corticotropin-releasing factor critical for zebrafish camouflage behavior is regulated by light and sensitive to ethanol. J. Neurosci. 2011, 31, 214–224. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Primer Sequence (5′-3′) | GenBank ID | Product Size (bp) |
---|---|---|---|
cat | F: AAGTCACTCACGACATCACGC; R:TGCCCTCATCGGTGTAGAAC | NM_130912.1 | 168 |
gpx | F: GCACAACAGTCAGGGATTACACC; R:AAGCCATTTCCAGGACGGAC | AY216589.1 | 166 |
mn-sod | F: AGAGCGGAAGATTGAGGATTG; R: GCTGACATTCTCCCAGTTTACAAC | NM_199976.1 | 179 |
ucp2 | F: TGCACTACGATCATTGCTTCC; R: CGAACATAACCACATTCCAGG | NM_131176.1 | 187 |
keap1 | F: CAGTGCACATGGAGTCTCAGT; R: ACGGTTCCATGGTCACAGCTA | NM_182864.2 | 177 |
ttr | F: CGGGTGGAGTTTGACACTTT; R: GCTCAGAAGGAGAGCCAGTG | BC081488 | 129 |
crh | F: TTCGGGAAGTAACCACAAGC; R: CTGCACTCTATTCGCCTTCC | NM_001007379 | 161 |
dio1 | F: GTTCAAACAGCTTGTCAAGGACT; R: AGCAAGCCTCTCCTCCAAGTT | BC076008 | 142 |
ugt1ab | F: CCACCAAGTCTTTCCGTGTT; R: GCAGTCCTTCACAGGCTTTC | NM_213422 | 168 |
trβ | F: TGGGAGATGATACGGGTTGT; R: ATAGGTGCCGATCCAATGTC | NM131340 | 100 |
tshβ | F: GCAGATCCTCACTTCACCTACC; R: GCACAGGTTTGGAGCATCTCA | AY135147 | 121 |
tb2xb | F: AACTGGCAGAGATGCTGGTC; R: ACACCGGTCATTTTGGTGGT | NM_131051.1 | 128 |
amhc | F: GCTCCTTCCTCGGTGTGAAA; R: TTTTCAGACTCGGCGCTCTT | NM_198823.1 | 86 |
bmp4 | F: CCCAGATCAAACAGGGGACC; R: AGGTGTTGTGCCTCACCAAA | NM_131342.2 | 123 |
notch1b | F: CGATGGTGTTGCTTAAGAATGG; R: ATGTGGTCTGTGATTTCCCG | NM_131302.2 | 149 |
myl7 | F: GGAGAGAAGCTCAATGGCACA; R: GTCATTAGCAGCCTCTTGAACTCA | NM_131329.3 | 116 |
pomca | F: GCTCAGTGTTGGGAAAATGC; R: GGTAGACGGGGGTTTCATCT | XM_009297698.3 P | 112 |
pomcb | F: GTGCAGATCGGACCAAGAAT; R: GCAAACCCAAGCTCAGACTC | NM_001083051.1 | 105 |
crhb | F: CTCGCCACTTTTTGACATGA; R: GCTGCTCTCGATGGCTCTAC | NM_001007379.1 | 101 |
nr3c1 | F: GGCCAGTTTATGCTTTTCCA; R: TTGTGTGTGCCAGTCTTTCC | NM_001020711.3 | 103 |
nrf2 | F: TCCGAGCCCAAAGAGAACATT; R: TGCCATCATTCGTTTGCTGT | NM_175043.2 | 175 |
eef1a | F: CACTGAGGTGAAGTCCGTTG; R: GGGGTCGTTCTTGCTGTCT | DQ402371 | 142 |
β-actin | F: CGAGCAGGAGATGGGAACC; R: CAACGGAAACGCTCATTGC | AF057040.1 | 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, E.; Zeng, M.; Yan, H.; Gao, J.; Chen, Z.; Zhang, N.; Guo, Y.; Wang, Z.; Dong, Z. Toxic Effects of Tetramethyl Bisphenol A on Embryonic–Larval Development of Zebrafish (Danio rerio). Fishes 2025, 10, 407. https://doi.org/10.3390/fishes10080407
Yin E, Zeng M, Yan H, Gao J, Chen Z, Zhang N, Guo Y, Wang Z, Dong Z. Toxic Effects of Tetramethyl Bisphenol A on Embryonic–Larval Development of Zebrafish (Danio rerio). Fishes. 2025; 10(8):407. https://doi.org/10.3390/fishes10080407
Chicago/Turabian StyleYin, Ermei, Manwen Zeng, Haipeng Yan, Jiahao Gao, Zuchun Chen, Ning Zhang, Yusong Guo, Zhongduo Wang, and Zhongdian Dong. 2025. "Toxic Effects of Tetramethyl Bisphenol A on Embryonic–Larval Development of Zebrafish (Danio rerio)" Fishes 10, no. 8: 407. https://doi.org/10.3390/fishes10080407
APA StyleYin, E., Zeng, M., Yan, H., Gao, J., Chen, Z., Zhang, N., Guo, Y., Wang, Z., & Dong, Z. (2025). Toxic Effects of Tetramethyl Bisphenol A on Embryonic–Larval Development of Zebrafish (Danio rerio). Fishes, 10(8), 407. https://doi.org/10.3390/fishes10080407