Serum Markers of Bone Fragility in Type-2 Diabetes Mellitus
Highlights
- Patients with type 2 diabetes mellitus have significantly higher scores in over-vigilance and inhibition schematic domains.
- Epidemiological studies do not provide unitary information on the association between markers of bone fragility and fracture risk in T2DM.
Abstract
:Highlights
- Patients with type 2 diabetes mellitus have significantly higher scores in over-vigilance and inhibition schematic domains.
- Epidemiological studies do not provide unitary information on the association between markers of bone fragility and fracture risk in T2DM.
Introduction
Serum potential markers for bone fragility in patients with T2DM
Conclusions
Compliance with Ethical Standards
Conflicts of Interest
References
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41 (Suppl 1), S13–S27. [Google Scholar] [CrossRef] [PubMed]
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 2017, 128, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, A.B.; Zang, N.; Van der Pluijm, W. Global Prevalence of Type 2 Diabetes over the Next Ten Years (2018-2028). Diabetes 2018, 67, db18–db202. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Sugimoto, T. Bone metabolism and fracture risk in type 2 diabetes mellitus. Endocr J. 2011, 58, 613–624. [Google Scholar] [CrossRef]
- de Liefde, I.; van der Klift, M.; de Laet, C.E.; et al. Bone mineral density and fracture risk in type-2 diabetes mellitus: The Rotterdam Study. Osteoporos Int. 2005, 16, 1713–1720. [Google Scholar] [CrossRef]
- Leslie, W.D.; Morin, S.N.; Lix, L.M.; Majumdar, S.R. Does diabetes modify the effect of FRAX risk factors for prediting major osteoporotic and hip fracture? Osteoporos Int. 2014, 25, 2817–2824. [Google Scholar] [CrossRef]
- Majumdar, S.R.; Leslie, W.D.; Lix, L.M.; et al. Longer Duration of Diabetes Strongly Impacts Fracture Risk Assessment: The Manitoba BMD Cohort. J Clin Endocrinol Metab. 2016, 101, 4489–4496. [Google Scholar] [CrossRef]
- Leslie, W.D.; Lix, L.M.; Prior, H.J.; et al. Biphasic fracture risk in diabetes: a population-based study. Bone. 2007, 40, 1595–1601. [Google Scholar] [CrossRef]
- Ivers, R.Q.; Cumming, R.G.; Mitchell, P.; Peduto, A.J. Diabetes and risk of fracture: The Blue Mountains Eye Study. Diabetes Care. 2001, 24, 1198–1203. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes-a meta-analysis. Osteoporos Int. 2007, 18, 427–444. [Google Scholar] [CrossRef]
- Schneider, A.L.; Williams, E.K.; Brancati, F.L.; et al. Diabetes and risk of fracture-related hospitalization: The Atherosclerosis Risk in Communities Study. Diabetes Care. 2013, 36, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Li, C.I.; Liu, C.S.; Lin, W.Y.; et al. Glycated Hemoglobin Level and Risk of Hip Fracture in Older People with Type 2 Diabetes: A Competing Risk Analysis of Taiwan Diabetes Cohort Study. J Bone Miner Res. 2015, 30, 1338–1346. [Google Scholar] [CrossRef]
- Shanbhogue, V.V.; Hansen, S.; Froust, M.; et al. Compromised cortical bone compartment in type 2 diabetes mellitus patients with microvascular disease. Eur J Endocrinol. 2016, 174, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Siris, E.S.; Boonen, S.; Mitchell, P.J.; et al. What’s in a name? What constitutes the clinical diagnosis of osteoporosis? Osteoporos Int. 2012, 23, 2093–2097. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J. Assessment of Osteoporosis at the Primary Healthcare Level; World Health Organization Collaborating Centre, University of Sheffield: Sheffield, UK, 2008. [Google Scholar]
- Ferrari, S.L.; Abrahamsen, B.; Napoli, N.; et al. Diagnosis and management of bone fragility in diabetes: an emerging challenge. Osteoporos Int. 2018, 29, 2585–2596. [Google Scholar] [CrossRef]
- Giangregorio, L.M.; Leslie, W.D.; Lix, L.M.; et al. FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res. 2012, 27, 301–308. [Google Scholar] [CrossRef]
- Leslie, W.D.; Rubin, M.R.; Schwartz, A.V.; Kanis, J.A. Type 2 diabetes and bone. J Bone Miner Res. 2012, 27, 2231–2237. [Google Scholar] [CrossRef]
- Starup-Linde, J. Diabetes, biochemical markers of bone turnover, diabetes control, and bone. Front Endocrinol (Lausanne). 2013, 4, 21. [Google Scholar] [CrossRef]
- Ferron, M.; Hinoi, E.; Karsenty, G.; Ducy, P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA. 2008, 105, 5266–5270. [Google Scholar] [CrossRef]
- Lee, N.K.; Sowa, H.; Hinoi, E.; et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007, 130, 456–469. [Google Scholar] [CrossRef]
- Kanazawa, I.; Yamaguchi, T.; Yamamoto, M.; et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009, 94, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, I.; Yamaguchi, T.; Yamamoto, M.; et al. Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int. 2011, 22, 187–194. [Google Scholar] [CrossRef]
- Fernandez-Real, J.M.; Izquierdo, M.; Ortega, F.; et al. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab. 2009, 94, 237–245. [Google Scholar] [CrossRef]
- Okazaki, R.; Totsuka, Y.; Hamano, K.; et al. Metabolic improvement of poorly controlled noninsulin- dependent diabetes mellitus decreases bone turnover. J Clin Endocrinol Metab. 1997, 82, 2915–2920. [Google Scholar] [CrossRef]
- Berner, H.S.; Lyngstadaas, S.P.; Spahr; et al. Adiponectin and its receptors are expressed in bone-forming cells. Bone. 2004, 35, 842–849. [Google Scholar] [CrossRef]
- Kanazawa, I.; Yamaguchi, T.; Yano, S.; et al. Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biol. 2007, 8, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Deepika, G.; Veeraiah, N.; Naveed, S.; Ramana, M.V. Serum alkaline phosphatase and high sensitivity C-reactive protein in type II diabetes mellitus: a risk of cardio vascular disease in South Indian population. Int J Res Med Sci. 2016, 4, 1107–1114. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Apekey, T.A.; Khan, H. Liver enzymes and risk of cardiovascular disease in the general population: A meta-analysis of prospective cohort studies. Atherosclerosis 2014, 236, 7–17. [Google Scholar] [CrossRef]
- Dutta, M.K.; Pakhetra, R.; Garg, M.K. Evaluation of bone mineral density in type 2 diabetes mellitus patients before and after treatment. Med J Armed Forces India. 2012, 68, 48–52. [Google Scholar] [CrossRef]
- Akin, O.; Göl, K.; Aktürk, M.; Erkaya, S. Evaluation of bone turnover in postmenopausal patients with type 2 diabetes mellitus using biochemical markers and bone mineral density measurements. Gynecol Endocrinol. 2003, 17, 19–29. [Google Scholar] [CrossRef]
- Seremet, O.C.; Olaru, O.T.; Ilie, M.; Gutu, C.M.; Nitulescu, M.G.; Diaconu, C.; Motofei, C.; Margine, D.; Negres, S.; Zbarcea, C.E.; Stefanescu, E. Determination of pyrrolizidine alkaloids in dietary sources using a spectrophotometric method. J Mind Med Sci. 2018, 5, 294–299. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.; Wang, Q. Associations between bone- alkaline phosphatase and bone mineral density in adults with and without diabetes. Medicine (Baltimore). 2018, 97, e0432. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, J.; Iki, M.; Kadowaki, E.; et al. JPOS Study Group. Biochemical markers for bone turnover predict risk of vertebral fractures in postmenopausal women over 10 years: The Japanese Population-based Osteoporosis (JPOS) Cohort Study. Osteoporos Int. 2013, 24, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Bauer, D.; Krege, J.; Lane, N.; et al. National Bone Health Alliance Bone Turnover Marker Project: current practices and the need for US harmonization, standardization, and common reference ranges. Osteoporos Int. 2012, 23, 2425–2433. [Google Scholar] [CrossRef]
- Gavrilă, M.T.; Ștefan, C. Arthroscopic treatment for elbow intraarticular loose bodies. J Clin Invest Surg. 2018, 3, 100–104. [Google Scholar] [CrossRef]
- Kučukalić-Selimović, E.; Valjevac, A.; Hadžović-Džuvo, A. The utility of procollagen type 1 N-terminal pro- peptide for the bone status assessment in postmenopausal women. Bosn J Basic Med Sci. 2013, 13, 259–265. [Google Scholar] [CrossRef]
- Liu, S.; Wang, W.; Yin, L.; Zhu, Y. Influence of Apelin-13 on osteoporosis in Type-2 diabetes mellitus: A clinical study. Pak J Med Sci. 2018, 34, 159–163. [Google Scholar] [CrossRef]
- Hygum, K.; Starup-Linde, J.; Harsløf1, T.; et al. Diabetes mellitus, a state of low bone turnover–a systematic review and meta-analysis. Eur J Endocrinol. 2017, 176, 137–157. [Google Scholar] [CrossRef]
- Ihm, S.H.; Youn, H.J.; Shin, D.I.; et al. Serum carboxy- terminal pro-peptide of type I procollagen (PIP) is a marker of diastolic dysfunction in patients with early type 2 diabetes mellitus. Int J Cardiol 2007, 122, 36–38. [Google Scholar] [CrossRef]
- Inukai, T.; Fujiwara, Y.; Tayama, K.; et al. Serum levels of carboxy-terminal pro-peptide of human type I procollagen are an indicator for the progression of diabetic nephropathy in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2000, 48, 23–28. [Google Scholar]
- Hamilton, E.J.; Rakic, V.; Davis, W.A.; et al. A five-year prospective study of bone mineral density in men and women with diabetes: The Fremantle Diabetes Study. Acta Diabetol. 2012, 49, 153–158. [Google Scholar] [CrossRef]
- Reyes-García, R.; Rozas-Moreno, P.; López-Gallardo, G.; et al. Serum levels of bone resorption markers are decreased in patients with type 2 diabetes. Acta Diabetol. 2013, 50, 47–52. [Google Scholar] [CrossRef]
- Boyce, B.F.; Xing, L. The RANKL/RANK/OPG pathway. Curr Osteoporos Rep. 2007, 5, 98–104. [Google Scholar] [CrossRef]
- Hofbauer, L.C.; Heufelder, A.E. The Role of Receptor Activator of Nuclear Factor-κB Ligand and Osteoprotegerin in the Pathogenesis and Treatment of Metabolic Bone Diseases. J Clin Endocrinol Metab. 2000, 85, 2355–2363. [Google Scholar] [CrossRef] [PubMed]
- Sassi, F.; Buondonno, I.; Luppi, C.; et al. Type 2 diabetes affects bone cells precursors and bone turnover. BMC Endocr Disord. 2018, 18, 55. [Google Scholar] [CrossRef]
- Lappin, D.F.; Eapen, B.; Robertson, D.; et al. Markers of bone destruction and formation and periodontitis in type 1 diabetes mellitus. J Clin Periodontol. 2009, 36, 634–641. [Google Scholar] [CrossRef]
- Tsentidis, C.; Gourgiotis, D.; Kossiva, L.; et al. Higher levels of s-RANKL and osteoprotegerin in children and adolescents with type 1 diabetes mellitus may indicate increased osteoclast signaling and predisposition to lower bone mass: a multivariate cross-sectional analysis. Osteoporos Int. 2016, 27, 1631–1643. [Google Scholar] [CrossRef]
- Yamamoto, T.; Ozono, K.; Miyauchi, A.; et al. Role of advanced glycation end products in adynamic bone disease in patients with diabetic nephropathy. Am J Kidney Dis. 2001, 38, S161–S164. [Google Scholar] [CrossRef]
- Katayama, Y.; Akatsu, T.; Yamamoto, M.; et al. Role of nonenzymatic glycosylation of type 1 collagen in diabetic osteopenia. J Bone Miner Res. 1996, 11, 931–937. [Google Scholar] [CrossRef]
- Ogawa, N.; Yamaguchi, T.; Yano, S.; et al. The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res. 2007, 39, 871–875. [Google Scholar] [CrossRef]
- Balalau, C.; Voiculescu, S.; Motofei, I.; Scaunasu, R.V.; Negrei, C. Low dose tamoxifen as treatment of benign breast proliferative lesions. Farmacia 2015, 63, 371–375. [Google Scholar]
- Miyata, T.; Notoya, K.; Yoshida, K.; et al. Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol. 1997, 8, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Viguet-Carrin, S.; Roux, J.P.; Arlot, M.E.; et al. Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone. 2006, 39, 1073–1079. [Google Scholar] [CrossRef]
- Yamamoto, M.; Yamaguchi, T.; Yamauchi, M.; et al. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2008, 93, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Shiraki, M.; Kuroda, T.; Shiraki, Y.; et al. Urinary pentosidine and plasma homocysteine levels at baseline predict future fractures in osteoporosis patients under bisphosphonate treatment. J Bone Miner Metab. 2011, 29, 62–70. [Google Scholar] [CrossRef]
- Paunica, M.; Pitulice, I.C.; Stefanescu, A. International migration from public health systems. Case of Romania. Amfiteatru economic. 2017, 19, 742–756. [Google Scholar]
- Schwartz, A.V.; Garnero, P.; Hillier, T.A.; et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab. 2009, 94, 2380–2386. [Google Scholar] [CrossRef]
- McCarthy, T.L.; Centrella, M.; Canalis, E. Insulinlike growth factor (IGF) and bone. Connect Tissue Res. 1989, 20, 277–282. [Google Scholar] [CrossRef]
- Zhang, M.; Xuan, S.; Bouxsein, M.L.; et al. Osteoblast- specific knockout of the insulin-like growth factor (IGF) receptor gene reveals and essential role of IGF signaling in bone matrix mineralization. J Biol Chem. 2002, 277, 44005–44012. [Google Scholar] [CrossRef]
- Terada, M.; Inaba, M.; Yano, Y.; et al. Growth-inhibitory effect of a high glucose concentration on osteoblast- like cells. Bone. 1998, 22, 17–23. [Google Scholar] [CrossRef]
- McCarthy, A.D.; Etcheverry, S.B.; Cortizo, A.M. Effect of advanced glycation endproducts on the secretion of insulin-like growth factor-I and its binding proteins: role in osteoblast development. Acta Diabetol. 2001, 38, 113–122. [Google Scholar] [CrossRef]
- Jehle, P.M.; Schulten, K.; Schulz, W.; et al. Serum levels of insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-1 to -6 and their relationship to bone metabolism in osteoporosis patients. Eur J Intern Med. 2003, 14, 32–38. [Google Scholar] [CrossRef]
- Wüster, C.; Blum, W.F.; Schlemilch, S.; et al. Decreased serum levels of insulin-like growth factor binding protein 3 in osteoporosis. J Intern Med. 1993, 234, 249–255. [Google Scholar] [CrossRef]
- Miyake, H.; Kanazawa, I.; Sugimoto, T. Decreased Serum Insulin-like Growth Factor-I is a Risk Factor for Non-Vertebral Fractures in Diabetic Postmenopausal Women. Intern Med. 2017, 56, 269–273. [Google Scholar] [CrossRef]
- Kanazawa, I.; Yamaguchi, T.; Yamamoto, M.; et al. Serum insulin-like growth factor-I level is associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes mellitus. Osteoporos Int. 2007, 18, 1675–1681. [Google Scholar] [CrossRef]
- Kanazawa, I.; Yamaguchi, T.; Sugimoto, T. Serum Insulin-like growth factor-I is a maker for assessing the severity of vertebral fractures in postmenopausal women with type 2 diabetes mellitus. Osteoporos Int. 2011, 22, 1191–1198. [Google Scholar] [CrossRef]
- Lewieck, E.M. Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases. Ther Adv Musculoskelet Dis. 2014, 6, 48–57. [Google Scholar] [CrossRef]
- García-Martín, A.; Rozas-Moreno, P.; Reyes-García, R.; et al. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012, 97, 234–241. [Google Scholar] [CrossRef]
- Khalek, M.A.A.; El-Barbary, A.M.; Elsherbeny, A.A.; et al. Serum sclerostin levels in type 2 diabetes mellitus patients: possible correlations with bone metabolism parameters and thrombocytosis. Egypt J Obes Diabetes and Endocrinol. 2015, 1, 21–27. [Google Scholar]
authors 2019 Rucsandra Dănciulescu Miulescu, Loreta Guja, Lavinia Claudia Ochiana, Anca Ungurianu1, Oana Cristina Şeremet, Emil Ştefănescu1
Share and Cite
Miulescu, R.D.; Guja, L.; Ochiana, L.C.; Ungurianu, A.; Șeremet, O.C.; Ștefănescu, E. Serum Markers of Bone Fragility in Type-2 Diabetes Mellitus. J. Mind Med. Sci. 2019, 6, 78-85. https://doi.org/10.22543/7674.61.P7885
Miulescu RD, Guja L, Ochiana LC, Ungurianu A, Șeremet OC, Ștefănescu E. Serum Markers of Bone Fragility in Type-2 Diabetes Mellitus. Journal of Mind and Medical Sciences. 2019; 6(1):78-85. https://doi.org/10.22543/7674.61.P7885
Chicago/Turabian StyleMiulescu, Rucsandra Dănciulescu, Loreta Guja, Lavinia Claudia Ochiana, Anca Ungurianu, Oana Cristina Șeremet, and Emil Ștefănescu. 2019. "Serum Markers of Bone Fragility in Type-2 Diabetes Mellitus" Journal of Mind and Medical Sciences 6, no. 1: 78-85. https://doi.org/10.22543/7674.61.P7885
APA StyleMiulescu, R. D., Guja, L., Ochiana, L. C., Ungurianu, A., Șeremet, O. C., & Ștefănescu, E. (2019). Serum Markers of Bone Fragility in Type-2 Diabetes Mellitus. Journal of Mind and Medical Sciences, 6(1), 78-85. https://doi.org/10.22543/7674.61.P7885