You are currently viewing a new version of our website. To view the old version click .
Tomography
  • Tomography is published by MDPI from Volume 7 Issue 1 (2021). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Grapho, LLC.
  • Article
  • Open Access

1 December 2016

Bloch–Siegert B1-Mapping Improves Accuracy and Precision of Longitudinal Relaxation Measurements in the Breast at 3 T

,
,
,
,
and
1
Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
2
Vanderbilt University Institute of Imaging Science, Vanderbilt University,Nashville, TN, USA
3
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
4
Department of Biostatistics and Center for Quantitative Sciences,Vanderbilt University, Nashville, TN, USA

Abstract

Variable flip angle (VFA) sequences are a popular method of calculating T1 values, which are required in a quantitative analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). B1 inhomogeneities are substantial in the breast at 3 T, and these errors negatively impact the accuracy of the VFA approach, thus leading to large errors in the DCE-MRI parameters that could limit clinical adoption of the technique. This study evaluated the ability of Bloch–Siegert B1 mapping to improve the accuracy and precision of VFA-derived T1 measurements in the breast. Test–retest MRI sessions were performed on 16 women with no history of breast disease. T1 was calculated using the VFA sequence, and B1 field variations were measured using the Bloch–Siegert methodology. As a gold standard, inversion recovery (IR) measurements of T1 were performed. Fibroglandular tissue and adipose tissue from each breast were segmented using the IR images, and the mean T1 was calculated for each tissue. Accuracy was evaluated by percent error (%err). Reproducibility was assessed via the 95% confidence interval (CI) of the mean difference and repeatability coefficient (r). After B1 correction, %err significantly (P < 0.001) decreased from 17% to 8.6%, and the 95% CI and r decreased from ±94 to ±38 milliseconds and from 276 to 111 milliseconds, respectively. Similar accuracy and reproducibility results were observed in the adipose tissue of the right breast and in both tissues of the left breast. Our data show that Bloch–Siegert B1 mapping improves accuracy and precision of VFA-derived T1 measurements in the breast.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.