Skip Content
You are currently on the new version of our website. Access the old version .
BiomimeticsBiomimetics
  • Article
  • Open Access

1 August 2023

Bio-Piezoelectric Ceramic Composites for Electroactive Implants—Biological Performance

,
,
,
,
,
,
,
,
and
1
Oral Biology and Biochemistry Research Group—Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
2
Department of Mechanical Engineering, Center for Microelectromechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal
3
Department of Chemical and Metallurgical Engineering, Aalto University, 02780 Espoo, Finland
4
Implant & Tissue Regeneration Group—Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), LIBPhys-FTC UID/FIS/04559/2013, Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
This article belongs to the Special Issue Bioinspired Surfaces and Functions

Abstract

Barium titanate (BaTiO3) piezoelectric ceramic may be a potential alternative for promoting osseointegration due to its piezoelectric properties similar to bone electric potentials generated in loading function. In this sense, the aim of this in vitro study was to evaluate the cellular response of human osteoblasts and gingival fibroblasts as well as the impact on S. oralis when in contact with BaTiO3 functionalized zirconia implant surfaces with piezoelectric properties. Zirconia discs with BaTiO3 were produced and contact poling (piezo activation) was performed. Osteoblasts (hFOB 1.19), fibroblasts (HGF hTERT) and S. oralis were culture on discs. Cell viability and morphology, cell differentiation markers, bacterial adhesion and growth were evaluated. The present study suggests that zirconia composite surfaces with the addition of piezoelectric BaTiO3 are not cytotoxic to peri-implant cells. Also, they seem to promote a faster initial osteoblast differentiation. Moreover, these surfaces may inhibit the growth of S. oralis by acting as a bacteriostatic agent over time. Although the piezoelectric properties do not affect the cellular inflammatory profile, they appear to enable the initial adhesion of bacteria, however this is not significant over the entire testing period. Furthermore, the addition of non-poled BaTiO3 to zirconia may have a potential reduction effect on IL-6 mediated-inflammatory activity in fibroblasts.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.