Previous Issue
Volume 6, June

Biomimetics, Volume 6, Issue 3 (September 2021) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Article
Biomimicry-Based Strategies for Urban Heat Island Mitigation: A Numerical Case Study under Tropical Climate
Biomimetics 2021, 6(3), 48; https://doi.org/10.3390/biomimetics6030048 - 16 Jul 2021
Viewed by 306
Abstract
In recent years, demographic growth has caused cities to expand their urban areas, increasing the risk of overheating, creating insurmountable microclimatic conditions within the urban area, which is why studies have been carried out on the urban heat island effect (UHI) and its [...] Read more.
In recent years, demographic growth has caused cities to expand their urban areas, increasing the risk of overheating, creating insurmountable microclimatic conditions within the urban area, which is why studies have been carried out on the urban heat island effect (UHI) and its mitigation. Therefore, this research aims to evaluate the cooling potential in the application of strategies based on biomimicry for the microclimate in a historical heritage city of Panama. For this, three case studies (base case, case 1, and case 2) of outdoor thermal comfort were evaluated, in which the Envi-met software was used to emulate and evaluate the thermal performance of these strategies during March (highest temperature month) and October (rainier month). The strategies used were extracted from the contrast of zebra skin, human skin, evaporative cooling, and ant skin. The results showed a reduction of 2.8 °C in the air temperature at 11:00, the radiant temperature decreased by 2.2 °C, and the PET index managed to reduce the thermal comfort indicator among its categories. The importance of thinking based on biomimicry in sustainable strategies is concluded; although significant changes were obtained, high risks of discomfort persist due to the layout and proximity of the building. Full article
Show Figures

Figure 1

Article
Biomimetic Leadership for 21st Century Companies
Biomimetics 2021, 6(3), 47; https://doi.org/10.3390/biomimetics6030047 - 14 Jul 2021
Cited by 1 | Viewed by 456
Abstract
Biomimicry is a scientific discipline that aims to model the behavior or properties of biological systems so as to adapt them to other scientific areas. Recently, this approach has been adopted in order to develop an organizational model called “Organizational Biomimicry”. It proposes [...] Read more.
Biomimicry is a scientific discipline that aims to model the behavior or properties of biological systems so as to adapt them to other scientific areas. Recently, this approach has been adopted in order to develop an organizational model called “Organizational Biomimicry”. It proposes a systemic approach, a worldview that places the organization and the people related to it as an integral part of nature, and an R&D system based on continuous learning from nature. The effective management of this business model depends on leaders who can make dynamic decisions, generate commitment to the views of the company, define specific goals, actively learn on multiple levels and tackle conflicts. This type of leadership may actually be being exercised in business practice; however, no leadership style inspired by biomimicry has been theorized to date. Thus, the aim of this research was to present a biomimetic leadership model that considers nature as a model, measure and mentor. To this end, we proposed, firstly, a definition of a biomimetic leader from the point of view of the characteristics of biomimetic organizations. Then, we determined the characteristics of this leadership type. Secondly, we conducted a review of the main leadership styles analyzed in the recent literature about management; then, for each leadership type, we extracted the characteristics that will adapt to the biomimetic leadership model. From this process, we obtained the traits of a biomimetic leader. This characterization (definition plus characteristics) was subjected to an expert panel, which determined its validity. Full article
(This article belongs to the Special Issue Bioinspired Intelligence II)
Review
Forced Biomineralization: A Review
Biomimetics 2021, 6(3), 46; https://doi.org/10.3390/biomimetics6030046 - 12 Jul 2021
Viewed by 322
Abstract
Biologically induced and controlled mineralization of metals promotes the development of protective structures to shield cells from thermal, chemical, and ultraviolet stresses. Metal biomineralization is widely considered to have been relevant for the survival of life in the environmental conditions of ancient terrestrial [...] Read more.
Biologically induced and controlled mineralization of metals promotes the development of protective structures to shield cells from thermal, chemical, and ultraviolet stresses. Metal biomineralization is widely considered to have been relevant for the survival of life in the environmental conditions of ancient terrestrial oceans. Similar behavior is seen among extremophilic biomineralizers today, which have evolved to inhabit a variety of industrial aqueous environments with elevated metal concentrations. As an example of extreme biomineralization, we introduce the category of “forced biomineralization”, which we use to refer to the biologically mediated sequestration of dissolved metals and metalloids into minerals. We discuss forced mineralization as it is known to be carried out by a variety of organisms, including polyextremophiles in a range of psychrophilic, thermophilic, anaerobic, alkaliphilic, acidophilic, and halophilic conditions, as well as in environments with very high or toxic metal ion concentrations. While much additional work lies ahead to characterize the various pathways by which these biominerals form, forced biomineralization has been shown to provide insights for the progression of extreme biomimetics, allowing for promising new forays into creating the next generation of composites using organic-templating approaches under biologically extreme laboratory conditions relevant to a wide range of industrial conditions. Full article
(This article belongs to the Special Issue Extreme Biomineralization and Extreme Biomimetics)
Show Figures

Figure 1

Article
Synthesis of Inorganic Compounds in the Matrix of Polysaccharide Chitosan
Biomimetics 2021, 6(3), 45; https://doi.org/10.3390/biomimetics6030045 - 05 Jul 2021
Viewed by 369
Abstract
Data related to the fabrication of hybrid materials based on the polysaccharide chitosan were systematized and reviewed. The possibility of using chitosan as a “host” matrix for in situ synthesis of inorganic compounds for the preparation of various types of composite materials were [...] Read more.
Data related to the fabrication of hybrid materials based on the polysaccharide chitosan were systematized and reviewed. The possibility of using chitosan as a “host” matrix for in situ synthesis of inorganic compounds for the preparation of various types of composite materials were investigated. Coprecipitation of metal oxides/hydroxides (Fe, Ni, Al, Zr, Cu and Mn) with chitosan was carried out through the alkalinization of solutions containing metal salts and chitosan, with the addition of ammonia or alkali solutions, homogeneous hydrolysis of urea, or electrophoretic deposition on the cathode. The synthesis of transition metal ferrocyanides and hydroxyapatite was achieved from precursor salts in a chitosan solution with simultaneous alkalinization. The mechanism of composite formation during the coprecipitation process of inorganic compounds with chitosan is discussed. Composite materials are of interest as sorbents, coatings, sensors, and precursors for the production of ceramic and electrode materials. Full article
Show Figures

Figure 1

Review
Cellulases: From Bioactivity to a Variety of Industrial Applications
Biomimetics 2021, 6(3), 44; https://doi.org/10.3390/biomimetics6030044 - 05 Jul 2021
Viewed by 533
Abstract
Utilization of microbial enzymes has been widely reported for centuries, but the commercial use of enzymes has been recently adopted. Particularly, cellulases have been utilized in various commercial sectors including agriculture, brewing, laundry, pulp and paper and textile industry. Cellulases of microbial origin [...] Read more.
Utilization of microbial enzymes has been widely reported for centuries, but the commercial use of enzymes has been recently adopted. Particularly, cellulases have been utilized in various commercial sectors including agriculture, brewing, laundry, pulp and paper and textile industry. Cellulases of microbial origin have shown their potential application in various commercial sectors including textile, pulp and paper, laundry, brewing, agriculture and biofuel. Cellulases have diversified applications in the food industry, food service, food supply and its preservation. Indeed, cellulases can tenderize fruits, clarify the fruit juices, reduce roughage in dough, hydrolyze the roasted coffee, extract tea polyphenols and essential oils from olives and can increase aroma and taste in food items. However, their role in food industries has by and large remained neglected. The use of immobilized cellulases has further expanded their application in fruit and vegetable processing as it potentiates the catalytic power and reduces the cost of process. Technological and scientific developments will further expand their potential usage in the food industry. Full article
Show Figures

Figure 1

Article
Deformation Behavior of Elastomer-Glass Fiber-Reinforced Plastics in Dependence of Pneumatic Actuation
Biomimetics 2021, 6(3), 43; https://doi.org/10.3390/biomimetics6030043 - 22 Jun 2021
Viewed by 474
Abstract
This paper aims to define the influencing design criteria for compliant folding mechanisms with pneumatically actuated hinges consisting of fiber-reinforced plastic (FRP). Through simulation and physical testing, the influence of stiffness, hinge width as well as variation of the stiffness, in the flaps [...] Read more.
This paper aims to define the influencing design criteria for compliant folding mechanisms with pneumatically actuated hinges consisting of fiber-reinforced plastic (FRP). Through simulation and physical testing, the influence of stiffness, hinge width as well as variation of the stiffness, in the flaps without changing the stiffness in the hinge zone, was evaluated. Within a finite element model software, a workflow was developed for simulations, in order to infer mathematical models for the prediction of mechanical properties and the deformation behavior as a function of the aforementioned parameters. In conclusion, the bending angle increases with decreasing material stiffness and with increasing hinge width, while it is not affected by the flap stiffness itself. The defined workflow builds a basis for the development of a predictive model for the deformation behavior of FRPs. Full article
Show Figures

Figure 1

Article
Self-Actuated Paper and Wood Models: Low-Cost Handcrafted Biomimetic Compliant Systems for Research and Teaching
Biomimetics 2021, 6(3), 42; https://doi.org/10.3390/biomimetics6030042 - 22 Jun 2021
Viewed by 526
Abstract
The abstraction and implementation of plant movement principles into biomimetic compliant systems are of increasing interest for technical applications, e.g., in architecture, medicine, and soft robotics. Within the respective research and development approaches, advanced methods such as 4D printing or 3D-braiding pultrusion are [...] Read more.
The abstraction and implementation of plant movement principles into biomimetic compliant systems are of increasing interest for technical applications, e.g., in architecture, medicine, and soft robotics. Within the respective research and development approaches, advanced methods such as 4D printing or 3D-braiding pultrusion are typically used to generate proof-of-concept demonstrators at the laboratory or demonstrator scale. However, such techniques are generally time-consuming, complicated, and cost-intensive, which often impede the rapid realization of a sufficient number of demonstrators for testing or teaching. Therefore, we have produced comparable simple handcrafted compliant systems based on paper, wood, plastic foil, and/or glue as construction materials. A variety of complex plant movement principles have been transferred into these low-cost physical demonstrators, which are self-actuated by shrinking processes induced by the anisotropic hygroscopic properties of wood or paper. The developed systems have a high potential for fast, precise, and low-cost abstraction and transfer processes in biomimetic approaches and for the “hands-on understanding” of plant movements in applied university and school courses. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop