Preparation and Performance of Biomimetic Zebra-Striped Wood-Based Photothermal Evaporative Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Balsa-TA-Fe3+
2.3. Characterization
2.4. Solar Evaporation Performance
3. Results
3.1. Characterization of TA-Fe3+-Balsa
3.1.1. SEM of TA-Fe3+-Balsa
3.1.2. FTIR of TA-Fe3+-Balsa
3.1.3. XPS of TA-Fe3+-Balsa
3.1.4. Hydrophilicity Test of TA-Fe3+-Balsa
3.2. Analysis of Photothermal Performance
3.2.1. Heating Performance
3.2.2. UV-Vis-NIR of TA-Fe3+-Balsa and Cycling Stability
3.3. Interfacial Evaporation Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, Y.W.; Yoo, S.S.; Lee, J.H.; Moon, M.W.; Yoo, P.J. Graphite/SnSe hybrid-embedded monolithic foams with hierarchical and bimodal pores for high performance solar desalination membranes with spontaneous salt rejection. Sep. Purif. Technol. 2022, 302, 122166. [Google Scholar] [CrossRef]
- Audrey, A.; Gilbert, F.H.; Michela, M.; Zandaryaa, S.; When, U.; Imamura, Y.; Koike, T.; Filali-Meknassi, Y. World Water Development Report 2020—Water and Climate Change; UNESCO: Paris, France, 2020. [Google Scholar]
- Ghaffar, A.; Imran, Q.; Hassan, M.; Usman, M.; Khan, M.U. Solar water desalination and energy generation by highly efficient graphene oxide-melanin photothermal membrane. J. Environ. Chem. Eng. 2022, 10, 108424. [Google Scholar] [CrossRef]
- Guo, Y.; Dundas, C.M.; Zhou, X.; Johnston, K.P.; Yu, G. Molecular engineering of hydrogels for rapid water disinfection and sustainable solar vapor generation. Adv. Mater. 2021, 33, e2102994. [Google Scholar] [CrossRef]
- Li, S. Structure Design and Performance Study of Solar Water Evaporator Based on Cellulose Gel; Guilin University of Technology: Guilin, China, 2021. [Google Scholar] [CrossRef]
- Liu, G.; Chen, T.; Xu, J.; Yao, G.; Xie, J.; Cheng, Y.; Miao, Z.; Wang, K. Salt-rejecting solar interfacial evaporation. Cell Rep. Phys. Sci. 2021, 2, 100310. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Y.; Liao, Y.; Ji, L.; Zhao, R.; Zhu, D.; Hu, X.; Qin, G.; Rong, H.; Zhang, X. High-entropy-alloy-nanoparticles enabled wood evaporator for efficient photothermal conversion and sustainable solar desalination. Adv. Energy Mater. 2022, 12, 2203057. [Google Scholar] [CrossRef]
- Liu, K.-K.; Jiang, Q.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R.R.; Singamaneni, S. Wood graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl. Mater. Interfaces 2017, 9, 7675–7681. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Hashaikeh, R.; Hilal, N. Solar powered desalination technology, energy and future outlook. Desalination 2019, 453, 54–76. [Google Scholar] [CrossRef]
- Li, Y. Research progress on interfacial solar photothermal evaporation of organic aerogel materials. New Chem. Mater. 2024, 52, 1–8. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Song, W.; Li, X.; Yang, L.; Yan, L. Boosting interfacial solar steam generation by three-dimensional bilayer cellulose aerogels. J. Colloid Interface Sci. 2023, 650, 339–349. [Google Scholar] [CrossRef]
- Zhu, M.; Li, Y.; Chen, G.; Jiang, F.; Yang, Z.; Luo, X.; Wang, Y.; Lacey, S.D.; Dai, J.; Wang, C.; et al. Tree-inspired design for high-efficiency water extraction. Adv. Mater. 2017, 29, 1704107. [Google Scholar] [CrossRef]
- Lu, S.; Jiang, X. Preparation of poplar wood-based solar-thermal conversion materials and study on water evaporation performance. Chem. Eng. 2024, 38, 94–97. [Google Scholar] [CrossRef]
- Gao, H.; Yang, M.; Dang, B.; Luo, X.; Liu, S.; Li, S.; Chen, Z.; Li, J. Natural phenolic compound-iron complexes: Sustainable solar absorbers for wood-based solar steam generation devices. RSC Adv. 2020, 10, 1152–1158. [Google Scholar] [CrossRef]
- Yan, W.; Shi, M.; Dong, C.; Liu, L.; Gao, C. Applications of tannic acid in membrane technologies: A review. Adv. Colloid Interface Sci. 2020, 284, 102267. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Bin Kim, D.; Kim, H.S. Neuroprotective effects of tannic acid in the postischemic brain via direct chelation of Zn2+. Anim. Cells Syst. 2022, 26, 183–191. [Google Scholar] [CrossRef]
- Phiwchai, I.; Yuensook, W.; Sawaengsiriphon, N.; Krungchanuchat, S.; Pilapong, C. Tannic acid (TA): A molecular tool for chelating and imaging labile iron. Eur. J. Pharm. Sci. 2018, 114, 64–73. [Google Scholar] [CrossRef]
- Huang, C.-W.; Huang, C.-H.; Hung, Y.-H.; Chang, C.-Y. Sensing pipes of a nuclear power mechanism using low-cost snake robot. Adv. Mech. Eng. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Wang, C. Research on High-Efficiency Solar Evaporation System Based on Biomimetic Structure and Biomass Materials; Qingdao University of Science and Technology: Qingdao, China, 2024. [Google Scholar]
- Cobb, A.; Cobb, S. Do zebra stripes influence thermoregulation. J. Nat. Hist. 2019, 53, 863–879. [Google Scholar] [CrossRef]
- Austin, M.C.; Araque, K.; Palacios, P.; Maure, K.R.; Mora, D. Numerical Assessment of Zebra-Stripes-Based Strategies in Buildings Energy Performance: A Case Study under Tropical Climate. Biomimetics 2022, 7, 14. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Q.; Yu, S.; Yan, M.; Berglund, L. Optically transparent wood from ananoporous cellulosic template: Combining functional and structuralperformance. Biomacromolecules 2016, 17, 1358–1364. [Google Scholar] [CrossRef]
- Wang, X.Q.; Dai, X.J.; Guan, H.; Wang, X. Research progress on wood-based solar interfacial evaporators. J. For. Eng. 2023, 8, 1–10. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, Y.; Zou, X.; Xing, L.; Liu, W.; Huang, Z.; Feng, Y.; Wang, J. Biomass-Based Ferric Tannate Hydrogel with a Photothermal Conversion Function for Solar Water Evaporation. ACS Appl. Polym. Mater. 2023, 5, 9574–9584. [Google Scholar] [CrossRef]
- Horváth, G.; Pereszlényi, Á.; Száz, D.; Barta, A.; Jánosi, I.M.; Gerics, B.; Åkesson, S. Experimental evidence that stripes do not cool zebras. Sci. Rep. 2018, 8, 9351. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wang, X.; Hu, Y.; He, Y.; Yan, Y. Solar-thermal conversion and steam generation: A review. Appl. Therm. Eng. 2020, 179, 115691. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Z.; Shen, X.; Sun, Q.; Jin, C. Candle soot nanoparticle-decorated wood for efficient solar vapor generation. Sustain. Energy Fuels 2020, 4, 354–361. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, Y.; Shen, X.; Jin, C.; Sun, Q.; Li, H. A woodpolypyrrole composite as a photothermal conversion device for solar evaporation enhancement. J. Mater. Chem. A 2019, 7, 20706–20712. [Google Scholar] [CrossRef]
- Chen, T.; Wu, Z.; Liu, Z.; Aladejana, J.T.; Wang, X.; Niu, M.; Xie, Y. Hierarchical porous aluminophosphate-treated wood for high-efficiency solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 19511–19518. [Google Scholar] [CrossRef]
- Chao, W.; Sun, X.; Li, Y.; Cao, G.; Wang, R.; Wang, C.; Ho, S.-H. Enhanced directional seawater desalination using a structure-guided wood aerogel. ACS Appl. Mater. Interfaces 2020, 12, 22387–22397. [Google Scholar] [CrossRef]
Types of Wood Composites | Modification Process | Evaporation Rate (kg m2 h−1) | Ref. |
---|---|---|---|
CS-wood | Candle soot-infused wood | 0.95 | [27] |
PPy-wood | In situ composite of PPy | 1.01 | [28] |
AIP-wood | AIP loading | 1.42 | [29] |
rGO-wood | Coating with rGO | 1.35 | [30] |
Balsa-TA-Fe3+ | Delignified wood loaded with TA-Fe3+ | 1.44 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Wang, W.; Ba, Z.; Zhang, Y.; Xu, H.; Liang, D. Preparation and Performance of Biomimetic Zebra-Striped Wood-Based Photothermal Evaporative Materials. Biomimetics 2025, 10, 334. https://doi.org/10.3390/biomimetics10050334
Zhao Z, Wang W, Ba Z, Zhang Y, Xu H, Liang D. Preparation and Performance of Biomimetic Zebra-Striped Wood-Based Photothermal Evaporative Materials. Biomimetics. 2025; 10(5):334. https://doi.org/10.3390/biomimetics10050334
Chicago/Turabian StyleZhao, Zebin, Wenxuan Wang, Zhichen Ba, Yuze Zhang, Hongbo Xu, and Daxin Liang. 2025. "Preparation and Performance of Biomimetic Zebra-Striped Wood-Based Photothermal Evaporative Materials" Biomimetics 10, no. 5: 334. https://doi.org/10.3390/biomimetics10050334
APA StyleZhao, Z., Wang, W., Ba, Z., Zhang, Y., Xu, H., & Liang, D. (2025). Preparation and Performance of Biomimetic Zebra-Striped Wood-Based Photothermal Evaporative Materials. Biomimetics, 10(5), 334. https://doi.org/10.3390/biomimetics10050334