Biologic Therapies and Janus Kinase Inhibitors for Medium and Variable Vessel Vasculitides: A Review of Clinical and Preclinical Evidence
Abstract
1. Introduction to Medium and Variable Vessel Vasculitis
2. Polyarteritis Nodosa
2.1. Overview
2.2. Treatment
3. Kawasaki Disease
3.1. Overview
3.2. Treatment
4. Behçet’s Disease
4.1. Overview
4.2. Treatment
4.2.1. Mucocutaneous and Articular
4.2.2. Extra-Parenchymal Neurological and Vascular
4.2.3. Parenchymal CNS and Ocular Phenotype
5. Deficiency of ADA2
5.1. Overview
5.2. Treatment
6. Cogan’s Syndrome
6.1. Overview
6.2. Treatment
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MVV | Medium Vessel Vasculitis |
VVV | Variable Vessel Vasculitis |
PAN | Polyarteritis Nodosa |
KD | Kawasaki Disease |
BD | Behçet’s Disease |
DADA2 | Deficiency of Adenosine Deaminase 2 |
CS | Cogan’s Syndrome |
JAKi | Janus Kinase Inhibitor |
TCZ | Tocilizumab |
GCA | Giant Cell Arteritis |
RTX | Rituximab |
ANCA | Antineutrophil Cytoplasmic Antibodies |
AZA | Azathioprine |
MTX | Methotrexate |
MMF | Mycophenolate Mofetil |
CYC | Cyclophosphamide |
IFX | Infliximab |
ETN | Etanercept |
ADA | Adalimumab |
IL-6 | Interleukin-6 |
TNF-α | Tumor Necrosis Factor-Alpha |
IFN-α | Interferon-Alpha |
IL-2 | Interleukin-2 |
IL-1β | Interleukin-1 Beta |
NAAV | Non-ANCA-Associated Vasculitis |
TOF | Tofacitinib |
BAR | Baricitinib |
GM-CSF | Granulocyte-Macrophage Colony-Stimulating Factor |
JAK-STAT | Janus Kinase-Signal Transducer and Activator of Transcription |
IVIG | Intravenous Immunoglobulin |
CAN | Canakinumab |
ABC | Abciximab |
NLRP3 | NLR Family Pyrin Domain Containing 3 |
ANACOMP | Anakinra vs. IVIG Comparative Trial |
NIKITA | Non-Inferiority of anakinra vs. IVIG in Kawasaki Disease Treatment Assessment |
PDE4 | Phosphodiesterase-4 |
DAIBD | Disease Activity Index for Intestinal Behçet’s Disease |
BEGIN | Study of Infliximab in Behçet’s Disease |
SHIELD | Secukinumab in Behçet’s Uveitis Trial |
GOL | Golimumab |
UPA | Upadacitinib |
ABA | Abatacept |
CTLA-4 | Cytotoxic T-Lymphocyte-Associated Protein 4 |
TLR4/7/9 | Toll-Like Receptor 4/7/9 |
BDCAF | Behçet’s Disease Current Activity Form |
BVAS | Behçet’s Vasculitis Activity Score |
TADAI | Total Adjusted Disease Activity Index |
LOF | Loss-of-Function |
NET | Neutrophil Extracellular Trap |
HSCT | Hematopoietic Stem Cell Transplantation |
CRP | C-Reactive Protein |
ESR | Erythrocyte Sedimentation Rate |
SC | Subcutaneous |
IV | Intravenous |
OCT | Optical Coherence Tomography |
MRI | Magnetic Resonance Imaging |
References
- Chen, K.R.; Carlson, J.A. Clinical approach to cutaneous vasculitis. Am. J. Clin. Dermatol. 2008, 9, 71–92. [Google Scholar] [CrossRef]
- Tavares, L.C.P.; Caetano, L.V.N.; Ianhez, M. Side effects of chronic systemic glucocorticoid therapy: What dermatologists should know. An. Bras. Dermatol. 2024, 99, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Rathore, U.; Thakare, D.R.; Patro, P.; Agarwal, V.; Sharma, A.; Misra, D.P. A systematic review of clinical and preclinical evidences for Janus kinase inhibitors in large vessel vasculitis. Clin. Rheumatol. 2022, 41, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Silva-Fernández, L.; Loza, E.; Martínez-Taboada, V.M.; Blanco, R.; Rúa-Figueroa, I.; Pego-Reigosa, J.M.; Muñoz-Fernández, S.; Systemic Autoimmune Diseases Study Group of the Spanish Society for Rheumatology (EAS-SER). Biological therapy for systemic vasculitis: A systematic review. Semin. Arthritis Rheum. 2014, 43, 542–557. [Google Scholar] [CrossRef]
- Stone, J.H.; Tuckwell, K.; Dimonaco, S.; Klearman, M.; Aringer, M.; Blockmans, D.; Brouwer, E.; Cid, M.C.; Dasgupta, B.; Rech, J.; et al. Trial of Tocilizumab in Giant-Cell Arteritis. PLoS ONE 2014, 9, e115026. [Google Scholar] [CrossRef]
- McAdoo, S.P.; Medjeral-Thomas, N.R.; Mukhtyar, C.; Biddle, K.; Jade, J.; Wilson-Morkeh, H.; Adikari, M.; Al Yaghchi, C.; Anastasa, Z.; Basu, N.; et al. British Society for Rheumatology guideline on the management of ANCA-associated vasculitis. Ann. Rheum. Dis. 2023, 82, 3–16. [Google Scholar] [CrossRef]
- Araújo Correia, J.; Crespo, J.; Alves, G.; Salvador, F.; Matos-Costa, J.; Delgado Alves, J.; Fortuna, J.; Almeida, I.; Campar, A.; Brandão, M.; et al. Biologic therapy in large and small vessels vasculitis, and Behçet’s disease: Evidence- and practice-based guidance. Autoimmun. Rev. 2023, 22, 103362. [Google Scholar] [CrossRef]
- Serling-Boyd, N.; Wallace, Z.S. Management of primary vasculitides with biologic and novel small molecule medications. Curr. Opin. Rheumatol. 2021, 33, 8–14. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Liu, L.; Gong, X.; Liu, J.; Sun, L.; Liu, X.; Wu, L.; Chen, L.; Wang, L.; et al. Fine Comparison of the Efficacy and Safety Between GB242 and Infliximab in Patients with Rheumatoid Arthritis: A Phase III Study. Rheumatol. Ther. 2022, 9, 175–189. [Google Scholar] [CrossRef]
- Do, N.; Ringold, S.; Brandling-Bennett, H. Cutaneous polyarteritis nodosa in pediatric patients successfully treated with TNF-α inhibitor and methotrexate: Case series and literature review. Pediatr. Dermatol. 2019, 36, 932–935. [Google Scholar] [CrossRef]
- Eleftheriou, D.; Melo, M.; Marks, S.D.; Tullus, K.; Sills, J.; Cleary, G.; Dolezalova, P.; Ozen, S.; Pilkington, C.; Woo, P.; et al. Biologic therapy in primary systemic vasculitis of the young. Rheumatology 2009, 48, 978–986. [Google Scholar] [CrossRef]
- Burns, J.C.; Roberts, S.C.; Tremoulet, A.H.; He, F.; Printz, B.F.; Ashouri, N.; Jain, S.S.; Michalik, D.E.; Sharma, K.; Truong, D.T.; et al. Infliximab versus second intravenous immunoglobulin for treatment of resistant Kawasaki disease in the USA (KIDCARE): A randomised, multicentre comparative effectiveness trial. Lancet Child Adolesc. Health 2021, 5, 852–861, Erratum in Lancet Child Adolesc. Health 2022, 6, e5. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Hara, T.; Kikuchi, M.; Shimizu, H.; Miyamoto, T.; Iwashima, S.; Oonishi, T.; Hashimoto, K.; Kobayashi, N.; Waki, K.; et al. Infliximab versus intravenous immunoglobulin for refractory Kawasaki disease: A phase 3, randomized, open-label, active-controlled, parallel-group, multicenter trial. Sci. Rep. 2018, 8, 1994. [Google Scholar] [CrossRef]
- Wang, L.; He, M.; Wang, W.; Li, S.; Zhao, G. Efficacy and safety of infliximab in the treatment of Kawasaki disease: A systematic review and meta-analysis. Eur. J. Pediatr. 2024, 183, 1765–1776. [Google Scholar] [CrossRef] [PubMed]
- Induction Therapy with Anti-TNFα vs Cyclophosphamide in Severe Behçet Disease (ITAC). ClinicalTrials.gov. Identifier: NCT03371095. Updated 19 September 2023. Available online: https://clinicaltrials.gov/study/NCT03371095 (accessed on 28 January 2025).
- Izumo, H.; Ishikawa, N.; Kobayashi, Y.; Doi, T.; Okada, S. A Successful Infliximab Treatment of a Pediatric Case of Severe Polyarteritis Nodosa with a Cerebral Infarction and a Decreased Adenosine Deaminase 2 Activity. Cureus 2023, 15, e47952. [Google Scholar] [CrossRef]
- Sha, S.; Xu, B.; Wang, K.; Qiao, C.; Shi, H.; Jiang, J.; Quan, X.; Liu, X. Case report: Successful remission with upadacitinib in a young patient with anti-TNF-refractory intestinal Behçet’s disease. Front. Immunol. 2024, 15, 1483993. [Google Scholar] [CrossRef]
- Ates, M.B.; Karup, S.; Ugurlu, S. Infliximab as a successful treatment option in a case of adenosine deaminase 2 deficiency. Reumatismo 2023, 75, 225–228. [Google Scholar] [CrossRef]
- Simão Raimundo, D.; Cordeiro, A.I.; Parente Freixo, J.; Valente Pinto, M.; Neves, C.; Farela Neves, J. Case Report: Patient with deficiency of ADA2 presenting leukocytoclastic vasculitis and pericarditis during infliximab treatment. Front. Pediatr. 2023, 11, 1200401. [Google Scholar] [CrossRef]
- Parlar, K.; Tahir Turanli, E.; Nuhoglu Kantarci, E.; Hacioglu, A.; Kirectepe Aydin, A.; Yagiz Ayla, A.; Voyvoda, U.; Ozdogan, H.; Ugurlu, S. A case with febrile attacks and vasculopathy associated with ADA2 and MEFV pathogenic variants. Mod. Rheumatol. Case Rep. 2023, 8, 121–124. [Google Scholar] [CrossRef]
- Conticini, E.; Sota, J.; Falsetti, P.; Lamberti, A.; Miracco, C.; Guarnieri, A.; Frediani, B.; Cantarini, L. Biologic drugs in the treatment of polyarteritis nodosa and deficit of adenosine deaminase 2: A narrative review. Autoimmun. Rev. 2021, 20, 102784. [Google Scholar] [CrossRef] [PubMed]
- Al-Bishri, J.; le Riche, N.; Pope, J.E. Refractory polyarteritis nodosa successfully treated with infliximab. J. Rheumatol. 2005, 32, 1371–1373. [Google Scholar]
- Atamyıldız Uçar, S.; Demir, M.; Sözeri, B. Polyarteritis nodosa with life-threatening intracranial aneurysms in a child, and treatment with infliximab. Turk. J. Pediatr. 2024, 66, 801–808. [Google Scholar] [CrossRef]
- Brik, R.; Gepstein, V.; Shahar, E.; Goldsher, D.; Berkovitz, D. Tumor necrosis factor blockade in the management of children with orphan diseases. Clin. Rheumatol. 2007, 26, 1783–1785. [Google Scholar] [CrossRef]
- Campanilho-Marques, R.; Ramos, F.; Canhão, H.; Fonseca, J.E. Remission induced by infliximab in a childhood polyarteritis nodosa refractory to conventional immunosuppression and rituximab. Jt. Bone Spine 2014, 81, 277–278. [Google Scholar] [CrossRef] [PubMed]
- de Kort, S.W.; van Rossum, M.A.; ten Cate, R. Infliximab in a child with therapy-resistant systemic vasculitis. Clin. Rheumatol. 2006, 25, 769–771. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, S.; Rosner, I.; Slobodin, G.; Rozenbaum, M.; Kaly, L.; Jiries, N.; Boulman, N.; Awisat, A.; Hussein, H.; Novofastovski, I.; et al. Infliximab for the treatment of refractory polyarteritis nodosa. Clin. Rheumatol. 2019, 38, 2825–2833. [Google Scholar] [CrossRef] [PubMed]
- Lerkvaleekul, B.; Treepongkaruna, S.; Ruangwattanapaisarn, N.; Treesit, T.; Vilaiyuk, S. Recurrent ruptured abdominal aneurysms in polyarteritis nodosa successfully treated with infliximab. Biologics 2019, 13, 111–116. [Google Scholar] [CrossRef]
- Matsuo, S.; Hayashi, K.; Morimoto, E.; Kato, A.; Sada, K.-E.; Watanabe, H.; Takano-Narazaki, M.; Sunahori-Watanabe, K.; Kawabata, T.; Wada, J. The Successful Treatment of Refractory Polyarteritis Nodosa Using Infliximab. Intern. Med. 2017, 56, 1435–1438. [Google Scholar] [CrossRef]
- Teixeira, V.; Oliveira-Ramos, F.; Costa, M. Severe and Refractory Polyarteritis Nodosa Associated with CECR1 Mutation and Dramatic Response to Infliximab in Adulthood. J. Clin. Rheumatol. 2020, 26, e66–e69. [Google Scholar] [CrossRef]
- Tous-Romero, F.; Rodríguez-Almaraz, E.; Rodríguez-Peralto, J.L.; Postigo-Llorente, C. Polyarteritis Nodosa with a Systemic Inflammatory Response Pattern: Effectiveness of anti-TNF. Panarteritis nudosa con patrón de respuesta inflamatoria sistémica: Respuesta a anti-TNF. Actas Dermo-sifiliogr 2017, 108, 787–790. [Google Scholar] [CrossRef]
- Vega Gutierrez, J.; Rodriguez Prieto, M.A.; Garcia Ruiz, J.M. Successful treatment of childhood cutaneous polyarteritis nodosa with infliximab. J. Eur. Acad. Dermatol. Venereol. 2007, 21, 570–571. [Google Scholar] [CrossRef] [PubMed]
- Wahezi, D.M.; Gomes, W.A.; Ilowite, N.T. Cranial nerve involvement with juvenile polyarteritis nodosa: Clinical manifestations and treatment. Pediatrics 2010, 126, e719–e722. [Google Scholar] [CrossRef]
- Wu, K.; Throssell, D. A new treatment for polyarteritis nodosa. Nephrol. Dial. Transplant. 2006, 21, 1710–1712, Erratum in Nephrol. Dial. Transplant. 2006, 21, 2044. [Google Scholar] [CrossRef]
- Burns, J.C.; Best, B.M.; Mejias, A.; Mahony, L.; Fixler, D.E.; Jafri, H.S.; Melish, M.E.; Jackson, M.A.; Asmar, B.I.; Lang, D.J.; et al. Infliximab treatment of intravenous immunoglobulin-resistant Kawasaki disease. J. Pediatr. 2008, 153, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Youn, Y.; Kim, J.; Hong, Y.M.; Sohn, S. Infliximab as the First Retreatment in Patients with Kawasaki Disease Resistant to Initial Intravenous Immunoglobulin. Pediatr. Infect Dis. J. 2016, 35, 457–459. [Google Scholar] [CrossRef] [PubMed]
- Cheon, J.H.; Kim, H.S.; Han, D.S.; Kim, S.K.; Shin, S.J.; Kim, J.S.; Ye, B.D.; Song, G.A.; Lee, Y.; Kim, Y.; et al. Efficacy and Safety of Infliximab in Intestinal Behçet’s Disease: A Multicenter, Phase 3 Study (BEGIN). Gut Liver 2023, 17, 777–785. [Google Scholar] [CrossRef]
- Cambridge University Hospitals NHS Foundation Trust. Biologics in Refractory Vasculitis (BIOVAS). ClinicalTrials.gov. Identifier: NCT05168475. Available online: https://clinicaltrials.gov/ct2/show/NCT05168475 (accessed on 13 December 2024).
- Saji, T.; Kemmotsu, Y. Infliximab for Kawasaki syndrome. J. Pediatr. 2006, 149, 426. [Google Scholar] [CrossRef]
- Blaisdell, L.L.; Hayman, J.A.; Moran, A.M. Infliximab treatment for pediatric refractory Kawasaki disease. Pediatr. Cardiol. 2011, 32, 1023–1027. [Google Scholar] [CrossRef]
- Girish, M.; Subramaniam, G. Infliximab treatment in refractory Kawasaki syndrome. Indian J. Pediatr. 2008, 75, 521–522. [Google Scholar] [CrossRef]
- Madan, D.; Maheshwari, A.; Mahto, D.; Mendiratta, V.; Sharma, S. Kawasaki Disease with Peripheral and Facial Gangrene: A Case report and review of literature. Trop. Doct. 2022, 52, 449–452. [Google Scholar] [CrossRef]
- Venkatnarayanan, K.; Arora, H.S.; Gupta, A.; Adhikari, K.M. Infliximab as a rescue therapy in the management of refractory typical infantile Kawasaki disease. Med. J. Armed Forces India 2020, 76, 225–228. [Google Scholar] [CrossRef]
- Jimenez-Fernandez, S.G.; Tremoulet, A.H. Infliximab treatment of pancreatitis complicating acute kawasaki disease. Pediatr. Infect Dis. J. 2012, 31, 1087–1089. [Google Scholar] [CrossRef] [PubMed]
- Oishi, T.; Fujieda, M.; Shiraishi, T.; Ono, M.; Inoue, K.; Takahashi, A.; Ogura, H.; Wakiguchi, H. Infliximab treatment for refractory Kawasaki disease with coronary artery aneurysm. Circ. J. 2008, 72, 850–852, Erratum in Circ. J. 2008, 72, 1212. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Rikitake, Y.; Tsuruda, T.; Kawata, C.; Rikitake, M.; Iwao, K.; Aizawa, A.; Kariya, Y.; Matsuda, M.; Miyauchi, S.; et al. Infliximab as an alternative therapy for refractory adult onset Kawasaki disease: A case report. Medicine 2018, 97, e12720. [Google Scholar] [CrossRef]
- Accomando, S.; Liotta, A.; Maggio, M.C.; Cardella, F.; Corsello, G. Infliximab administration effective in the treatment of refractory Kawasaki disease. Pediatr. Allergy Immunol. 2010, 21, 1091–1092. [Google Scholar] [CrossRef]
- Zulian, F.; Zanon, G.; Martini, G.; Mescoli, G.; Milanesi, O. Efficacy of infliximab in long-lasting refractory Kawasaki disease. Clin. Exp. Rheumatol. 2006, 24, 453. [Google Scholar]
- Weiss, J.E.; Eberhard, B.A.; Chowdhury, D.; Gottlieb, B.S. Infliximab as a novel therapy for refractory Kawasaki disease. J. Rheumatol. 2004, 31, 808–810. [Google Scholar]
- Agarwal, S.; Mulkutkar, S.; Suri, D.; Singh, S.; Gupta, A. Retinal Vasculitis in Kawasaki Disease. Indian J. Pediatr. 2015, 82, 1183–1184. [Google Scholar] [CrossRef] [PubMed]
- Kikuoka, I.; Yamamoto, K.; Kodo, K.; Maeda, J.; Yamagishi, H. Successful and unsuccessful management for indolent Kawasaki disease. Pediatr. Int. 2022, 64, e14865. [Google Scholar] [CrossRef] [PubMed]
- Salguero, J.S.; Durán, D.G.; Peracaula, C.S.; Iznardi, C.R.; Tardío, J.O. Enfermedad de Kawasaki refractaria con aneurismas coronarios tratada con infliximab [Refractory Kawasaki disease with coronary aneurysms treated with infliximab]. An. Pediatr. 2010, 73, 268–271. [Google Scholar] [CrossRef]
- Shirley, D.A.; Stephens, I. Primary treatment of incomplete Kawasaki disease with infliximab and methylprednisolone in a patient with a contraindication to intravenous immune globulin. Pediatr. Infect Dis. J. 2010, 29, 978–979. [Google Scholar] [CrossRef] [PubMed]
- Servel, A.C.; Vincenti, M.; Darras, J.P.; Lalande, M.; Rodière, M.; Filleron, A. Maladie de Kawasaki résistante aux immunoglobulines et compliquée de syndrome d’activation macrophagique [Intravenous immunoglobulin-resistant Kawasaki disease with hemophagocytosis]. Arch. Pediatr. 2012, 19, 741–744. [Google Scholar] [CrossRef] [PubMed]
- Goswami, N.; Marzan, K.; De Oliveira, E.; Wagner-Lees, S.; Szmuszkovicz, J. Recurrent Kawasaki Disease: A Case Report of Three Separate Episodes at >4-Year Intervals. Children 2018, 5, 155. [Google Scholar] [CrossRef]
- Hoole, T.J.; Athapathu, A.S.; Abeygunawardene, A.D. A Sri Lankan infant with immunoglobulin resistant incomplete Kawasaki disease with a vesicular psoriasiform rash, hypertension and late onset small joint arthritis: A case report. BMC Pediatr. 2022, 22, 444. [Google Scholar] [CrossRef]
- O’connor, M.J.; Saulsbury, F.T. Incomplete and atypical Kawasaki disease in a young infant: Severe, recalcitrant disease responsive to infliximab. Clin. Pediatr. 2007, 46, 345–348. [Google Scholar] [CrossRef]
- Kanda, S.; Fujii, Y.; Hori, S.I.; Ohmachi, T.; Yoshimura, K.; Higasa, K.; Kaneko, K. Combined Single Nucleotide Variants of ORAI1 and BLK in a Child with Refractory Kawasaki Disease. Children 2021, 8, 433. [Google Scholar] [CrossRef]
- Krakowski, A.C.; Kim, S.S.; Burns, J.C. Transient lingual papillitis associated with confirmed herpes simplex virus 1 in a patient with kawasaki disease. Pediatr. Dermatol. 2014, 31, e124–e125. [Google Scholar] [CrossRef]
- Geller, L.; Kellen, R. Tumor necrosis factor antagonist-induced psoriasis in a 3-year-old boy with Kawasaki disease. Dermatol. Online J. 2017, 23, 22. [Google Scholar] [CrossRef]
- Malekzadeh, I.; Ziaee, V.; Sadrosadat, T.; Moardinejad, M.H.; Sayadpour-Zanjani, K. Kawasaki Disease and Peripheral Gangrene in Infancy. Iran. J. Pediatr. 2015, 25, e3309. [Google Scholar] [CrossRef]
- Amorim-Figueiredo, R.; Pereira Lemos, A.; Rito, T.; Conde, M.; Brito, M.J.; Pinto, F. Multiresistant Kawasaki Disease in a Young Infant with Giant Aneurysms Growing Fast. J. Cardiovasc. Dev. Dis. 2024, 11, 149. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.M.; Milner, D.C.; Frisbie, R.; Puente, M.A. Abducens nerve palsy: A rare copresenting sign of incomplete Kawasaki Disease. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2025, 29, 104061. [Google Scholar] [CrossRef]
- Suganuma, E.; Kambe, T.; Sato, S.; Hamamoto, M.; Kawano, Y. A case of Kawasaki disease complicated with retinal vasculitis. Pediatr. Int. 2019, 61, 829–830. [Google Scholar] [CrossRef]
- Vigil-Vázquez, S.; Butragueño-Laiseca, L.; López-González, J.; García-San Prudencio, M.; Rincón-López, E. A Case of Kawasaki Disease Presenting as Severe Myositis. Indian J. Pediatr. 2019, 86, 1066–1067. [Google Scholar] [CrossRef]
- Navidi, N.; Najibi, B.; Dinarvand, N.; Zamani, A.; Fathi, M.R. Atypical Kawasaki disease with giant coronary artery aneurysms in a 2-month-old boy: A case report. J. Med. Case Rep. 2024, 18, 630. [Google Scholar] [CrossRef]
- Lersch, R.; Mandilaras, G.; Schrader, M.; Anselmino, F.; Haas, N.A.; Jakob, A. Have we got the optimal treatment for refractory Kawasaki disease in very young infants? A case report and literature review. Front. Pediatr. 2023, 11, 1210940. [Google Scholar] [CrossRef]
- Sivakumar, K.; Pavithran, S. Extensive coronary aneurysms with thrombosis in resistant Kawasaki disease. Pediatr. Cardiol. 2013, 34, 444–446. [Google Scholar] [CrossRef] [PubMed]
- Talarico, R.; Italiano, N.; Emmi, G.; Piga, M.; Cantarini, L.; Mattioli, I.; Floris, A.; Gentileschi, S.; Di Cianni, F.; Urban, M.L.; et al. Comparative efficacy and safety of infliximab and adalimumab in severe mucocutaneous Behçet’s disease: Results from a multicenter randomized controlled trial. Ann. Rheum. Dis. 2024. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Liu, T.; Han, W.; Bai, X.; Ruan, G.; Lv, H.; Shu, H.; Li, Y.; Li, J.; et al. The efficacy and safety of anti-tumor necrosis factor agents in the treatment of intestinal Behcet’s disease, a systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2022, 37, 608–619. [Google Scholar] [CrossRef]
- Zhang, M.; Li, X.; Li, Y.; Li, Z. Effectiveness and safety of anti-tumor necrosis factor-alpha therapy in Behçet’s disease-associated uveitis: A systematic review and meta-analysis. Front. Pharmacol. 2020, 11, 941. [Google Scholar] [CrossRef]
- Hamza, M.M.; Macky, T.A.; Sidky, M.K.; Ragab, G.; Soliman, M.M. INTRAVITREAL INFLIXIMAB IN REFRACTORY UVEITIS IN BEHCET’S DISEASE: A Safety and Efficacy Clinical Study. Retina 2016, 36, 2399–2408. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, R.H.A.; Woldeamanuel, Y.W. The effectiveness of the anti-tumor necrosis factor therapy infliximab in neuro-Behçet’s disease: A systematic review and meta-analysis. J. Int. Med. Res. 2023, 51, 3000605231169895. [Google Scholar] [CrossRef]
- Batu, E.D.; Sener, S.; Cam, V.; Aktay Ayaz, N.; Ozen, S. Treatment with Biologic Drugs in Pediatric Behçet’s Disease: A Comprehensive Analysis of the Published Data. BioDrugs 2023, 37, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Poddighe, D.; Mukusheva, Z.; Dauyey, K.; Assylbekova, M. Adalimumab in the treatment of pediatric Behçet’s disease: Case-based review. Rheumatol. Int. 2019, 39, 1107–1112. [Google Scholar] [CrossRef]
- Maccora, I.; Orsini, S.I.; Gallizzi, R.; Montin, D.; Cattalini, M.; La Torre, F.; Spagnolo, A.; Diomeda, F.; Simonini, G. Uveitis in paediatric Behçet disease: A large multicentric Italian cohort. Ther. Adv. Musculoskelet. Dis. 2024, 16, 1759720X241275822. [Google Scholar] [CrossRef]
- Vena, G.A.; Cassano, N. Drug focus: Adalimumab in the treatment of moderate to severe psoriasis. Biologics 2007, 1, 93–103. [Google Scholar] [PubMed]
- Wang, C.R.; Yang, C.C. Adalimumab therapy in hepatitis B virus-negative polyarteritis nodosa: A case report. Medicine 2018, 97, e11053. [Google Scholar] [CrossRef] [PubMed]
- Al-Balbeesi, A.O.; Alhallaf, R.A.; Alsubeeh, N.A.; Fathaddin, A.A.; Bedaiwi, A.A.; Omair, M.A. Coexistence of Polyarteritis Nodosa of the Vulva and Retina in a Behçet’s Disease Patient: A Case Report. Cureus 2021, 13, e16096. [Google Scholar] [CrossRef]
- Alharthi, A.; Alhashmi Alamer, G.R.; Alqurashi, S.S.; Alsaeedi, E.E.; Alsulami, H. A Unique Case of Deficiency of Adenosine Deaminase 2 Single in a Young Adult Patient. Cureus 2023, 15, e33273. [Google Scholar] [CrossRef]
- Yuxuan, B.; Yan, D. Adenosine deaminase 2 deficiency in a Chinese patient: Report of one novel mutation and literature review. J. Cosmet. Dermatol. 2024, 23, 68–75. [Google Scholar] [CrossRef]
- Oster, C.; Stolte, B.; Asan, L.; Pul, R.; Klebe, S.; Köhrmann, M.; Breuckmann, K.; Rischpler, C.; Deuschl, C.; Dolff, S.; et al. Brainstem Infarction in Immunodeficiency Identified as Adenosine Deaminase 2 Deficiency: Case Report. J. Clin. Immunol. 2023, 43, 1597–1602. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Safety and Efficacy of Adalimumab Therapy for Treatment of Behcet’s Disease-related Uveitis in Sohag University Hospital. Identifier: NCT05683626. Available online: https://clinicaltrials.gov/study/NCT05683626 (accessed on 25 January 2025).
- ClinicalTrials.gov. Comparison of the Efficacy and Eafety of Adalimumab to That of Tocilizumab in Severe Uveitis of Behçet’s Disease. Identifier: NCT05874505. Updated May 25, 2023. Available online: https://clinicaltrials.gov/study/NCT05874505 (accessed on 25 January 2025).
- Tracey, D.; Klareskog, L.; Sasso, E.H.; Salfeld, J.G.; Tak, P.P. Tumor necrosis factor antagonist mechanisms of action: A comprehensive review. Pharmacol. Ther. 2008, 117, 244–279. [Google Scholar] [CrossRef]
- Portman, M. A Randomized, Double-Blind, Placebo-Controlled Study of Etanercept in Children with Kawasaki Disease. ClinicalTrials.gov. NCT00841789. Last updated 6 May 2023. Available online: https://clinicaltrials.gov/ct2/show/NCT00841789 (accessed on 27 January 2025).
- Portman, M.A.; Dahdah, N.S.; Slee, A.; Olson, A.K.; Choueiter, N.F.; Soriano, B.D.; Buddhe, S.; Altman, C.A.; for the EATAK Investigators. Etanercept with IVIg for Acute Kawasaki Disease: A Randomized Controlled Trial. Pediatrics 2019, 143, e20183675. [Google Scholar] [CrossRef]
- Melikoglu, M.; Fresko, I.; Mat, C.; Ozyazgan, Y.; Gogus, F.; Yurdakul, S.; Hamuryudan, V.; Yazici, H. Short-term trial of etanercept in Behçet’s disease: A double blind, placebo controlled study. J. Rheumatol. 2005, 32, 98–105. [Google Scholar]
- Krutzke, S.; Horneff, G. Treatment of Two Boys Suffering from Deficiency of Adenosine Deaminase Type 2 (DADA2) with TNF-Inhibitor Etanercept. J. Clin. Rheumatol. 2021, 27, S509–S512. [Google Scholar] [CrossRef]
- Yu, H.; Lin, S.; Li, L.; Li, J.; Chen, Q.; Wu, Y.; Qi, Y.; Wang, W.; Chang, X.; Zhang, J.; et al. Case Report: Novel ADA2 variants cause atypical adenosine deaminase 2 deficiency. Front. Genet. 2025, 15, 1478581. [Google Scholar] [CrossRef]
- Ferriani, M.P.L.; Valera, E.T.; de Sousa, G.R.; Sandrin-Garcia, P.; de Moura, R.R.; Hershfield, M.S.; de Carvalho, L.M. ADA2 deficiency (DADA2) associated with Evans syndrome and a severe ADA2 genotype. Rheumatology 2021, 60, e237–e239. [Google Scholar] [CrossRef] [PubMed]
- Sahin, S.; Adrovic, A.; Barut, K.; Baran, S.; Tahir Turanli, E.; Canpolat, N.; Kizilkilic, O.; Ozkaya, O.; Kasapcopur, O. A 9.5-year-old boy with recurrent neurological manifestations and severe hypertension, treated initially for polyarteritis nodosa, was subsequently diagnosed with adenosine deaminase type 2 deficiency (DADA2) which responded to anti-TNF-α. Paediatr. Int. Child Health 2020, 40, 65–68. [Google Scholar] [CrossRef]
- Al-Ghoul, M.; Yazbak, J.; Rummanneh, I.; Abuhammad, A.; Khalilia, A.H.; Wahdan, A.A.M. Deficiency of adenosine deaminase 2 (DADA2) presented with bilateral renal subcapsular hematoma: A case report and literature review. Ann. Med. Surg. 2024, 86, 6717–6720. [Google Scholar] [CrossRef] [PubMed]
- Inoue, N.; Shimizu, M.; Mizuta, M.; Ikawa, Y.; Yachie, A. Refractory cutaneous polyarteritis nodosa: Successful treatment with etanercept. Pediatr. Int. 2017, 59, 751–752. [Google Scholar] [CrossRef] [PubMed]
- Capuozzo, M.; Ottaiano, A.; Nava, E.; Cascone, S.; Fico, R.; Iaffaioli, R.V.; Cinque, C. Etanercept induces remission of polyarteritis nodosa: A case report. Front. Pharmacol. 2014, 5, 122. [Google Scholar] [CrossRef]
- Valor, L.; Monteagudo, I.; de la Torre, I.; González Fernández, C.; Montoro, M.; López Longo, J.; Carreño, L. Young male patient diagnosed with cutaneous polyarteritis nodosa successfully treated with etanercept. Mod. Rheumatol. 2014, 24, 688–689. [Google Scholar] [CrossRef]
- Zoshima, T.; Matsumura, M.; Suzuki, Y.; Kakuchi, Y.; Mizushima, I.; Fujii, H.; Yamada, K.; Yamagishi, M.; Kawano, M. A case of refractory cutaneous polyarteritis nodosa in a patient with hepatitis B carrier status successfully treated with tumor necrosis factor alpha blockade. Mod. Rheumatol. 2013, 23, 1029–1033. [Google Scholar] [CrossRef]
- Feinstein, J.; Arroyo, R. Successful treatment of childhood onset refractory polyarteritis nodosa with tumor necrosis factor alpha blockade. J. Clin. Rheumatol. 2005, 11, 219–222. [Google Scholar] [CrossRef]
- Marriaga-Núñez, B.; Arellano-Valdez, A.; Paz, J.P.A.; Bonal-Pérez, M.A.; Montaño-Durón, J.G.; Solórzano-Santos, F. Immunoglobulin-resistant Kawasaki disease. Enfermedad de Kawasaki refractaria a tratamiento con inmunoglobulina. Bol. Méd. Hosp. Infant Méx. 2023, 80, 260–264. [Google Scholar] [CrossRef]
- Walser, M.; Hermann, M.; Hufnagel, M.; Haas, N.A.; Fischer, M.; Dalla-Pozza, R.; Jakob, A. Anakinra and Etanercept Combination Treatment in a Child with Severe, Nonresponsive Kawasaki Disease. Pediatr. Infect Dis. J. 2020, 39, e310–e313. [Google Scholar] [CrossRef]
- Peyre, M.; Laroche, C.; Etchecopar, C.; Brosset, P. Place des immunosuppresseurs dans les formes évoluées de maladie de Kawasaki: À propos de deux cas avec atteinte cardiaque sévère [The role of immunosuppressive agents in Kawasaki disease: A discussion of two cases]. Arch. Pediatr. 2013, 20, 748–753. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, C.J.; Wang, R.P.; Wang, L.; Yang, H. Etanercept in the treatment of intestinal Behcet’s disease. Cell Biochem. Biophys. 2014, 69, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, S.; Greenwald, D. Golimumab. mAbs 2009, 1, 422–431. [Google Scholar] [CrossRef]
- Fabiani, C.; Sota, J.; Rigante, D.; Vitale, A.; Emmi, G.; Vannozzi, L.; Franceschini, R.; Bacherini, D.; Frediani, B.; Galeazzi, M.; et al. Rapid and Sustained Efficacy of Golimumab in the Treatment of Multirefractory Uveitis Associated with Behçet’s Disease. Ocul. Immunol. Inflamm. 2019, 27, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Mesquida, M.; Victoria Hernández, M.; Llorenç, V.; Pelegrín, L.; Espinosa, G.; Dick, A.D.; Adán, A. Behçet Disease-associated Uveitis Successfully Treated with Golimumab. Ocul. Immunol. Inflamm. 2012, 21, 160–162. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Coma, M.; Salom, D.; Díaz-Llopis, M.; López-Prats, M.J.; Calleja, S. Golimumab as rescue therapy for refractory immune-mediated uveitis: A three-center experience. Mediat. Inflamm. 2014, 2014, 717598. [Google Scholar] [CrossRef] [PubMed]
- Kon, T.; Hasui, K.; Suzuki, C.; Nishijima, H.; Tomiyama, M. Isolated myelitis in a patient with Behcet’s disease during golimumab therapy. J. Neuroimmunol. 2021, 354, 577533. [Google Scholar] [CrossRef]
- Kudsi, M.; Shahada, Z.; Haidar, G.; Safiah, M.H.; Khalayli, N. Golimumab therapy-induced isolated myelitis in a Behcet’s disease patient: A case report. Ann. Med. Surg. 2023, 85, 951–954. [Google Scholar] [CrossRef]
- Vitale, A.; Emmi, G.; Lopalco, G.; Fabiani, C.; Gentileschi, S.; Silvestri, E.; Di Scala, G.; Iannone, F.; Frediani, B.; Galeazzi, M.; et al. Long-term efficacy and safety of golimumab in the treatment of multirefractory Behçet’s disease. Clin. Rheumatol. 2017, 36, 2063–2069. [Google Scholar] [CrossRef]
- Cerny, T.; Borisch, B.; Introna, M.; Johnson, P.; Rose, A.L. Mechanism of action of rituximab. Anti-Cancer Drugs 2002, 13 (Suppl. S2), S3–S10. [Google Scholar] [CrossRef]
- Hadjadj, J.; Canzian, A.; Karadag, O.; Contis, A.; Maurier, F.; Sanges, S.; Sartorelli, S.; Denis, L.; de Moreuil, C.; Durel, C.; et al. Use of biologics to treat relapsing and/or refractory polyarteritis nodosa: Data from a European collaborative study. Rheumatology 2022, 62, 341–346. [Google Scholar] [CrossRef]
- Sauvaget, E.; Bonello, B.; David, M.; Chabrol, B.; Dubus, J.C.; Bosdure, E. Resistant Kawasaki disease treated with anti-CD20. J. Pediatr. 2012, 160, 875–876. [Google Scholar] [CrossRef] [PubMed]
- Orsoni, J.G.; Laganà, B.; Rubino, P.; Zavota, L.; Bacciu, S.; Mora, P. Rituximab ameliorated severe hearing loss in Cogan’s syndrome: A case report. Orphanet. J. Rare Dis. 2010, 5, 18. [Google Scholar] [CrossRef]
- Boukhris, I.; Hamdi, M.S.; Hariz, A.; Kesentini, M.; Azzabi, S.; Cherif, E.; Kechaou, I.; Ben Hassine, L. Efficacy of rituximab in refractory polyarteritis nodosa: A case report. Pan Afr. Med. J. 2023, 45, 92. [Google Scholar] [CrossRef]
- Seri, Y.; Shoda, H.; Hanata, N.; Nagafuchi, Y.; Sumitomo, S.; Fujio, K.; Yamamoto, K. A case of refractory polyarteritis nodosa successfully treated with rituximab. Mod. Rheumatol. 2017, 27, 696–698. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, E.; Cressend, T.; Duffau, P.; Grenouillet-Delacre, M.; Rouanet-Larivière, M.; Vital, A.; Longy-Boursier, M.; Mercié, P. Rituximab Efficacy during a Refractory Polyarteritis Nodosa Flare. Case Rep. Med. 2009, 2009, 738293. [Google Scholar] [CrossRef] [PubMed]
- Néel, A.; Masseau, A.; Hervier, B.; Bossard, C.; Cacoub, P.; Pagnoux, C.; Hamidou, M. Life-threatening hepatitis C virus-associated polyarteritis nodosa successfully treated by rituximab. J. Clin. Rheumatol. 2011, 17, 439–441. [Google Scholar] [CrossRef]
- Krishnan, S.; Bhakuni, D.S.; Kartik, S. Rituximab in refractory cutaneous polyarteritis. Int. J. Rheum. Dis. 2012, 15, e127. [Google Scholar] [CrossRef]
- Sonomoto, K.; Miyamura, T.; Watanabe, H.; Takahama, S.; Nakamura, M.; Ando, H.; Minami, R.; Yamamoto, M.; Saito, T.; Imayama, S.; et al. A case of polyarteritis nodosa successfully treated by rituximab. Nihon Rinsho Meneki Gakkai Kaishi 2008, 31, 119–123. [Google Scholar] [CrossRef]
- Ohta, R.; Sano, C. Comprehensive Management of Vasculitis and Suspected Polyarteritis Nodosa in an Older Patient. Cureus 2023, 15, e36307. [Google Scholar] [CrossRef]
- da Silva, L.S.; de Campos, K.V.; de Melo, A.K.; de Brito, D.C.; Braz, A.S.; Freire, E.A. Rituximab as an alternative for patients with severe systemic vasculitis refractory to conventional therapy: Report of seven cases and literature review. Rev. Bras. Reumatol. 2015, 55, 531–535. [Google Scholar] [CrossRef]
- Davatchi, F.; Shams, H.; Rezaipoor, M.; Sadeghi-Abdollahi, B.; Shahram, F.; Nadji, A.; Chams-Davatchi, C.; Akhlaghi, M.; Faezi, T.; Naderi, N. Rituximab in intractable ocular lesions of Behcet’s disease; randomized single-blind control study (pilot study). Int. J. Rheum. Dis. 2010, 13, 246–252. [Google Scholar] [CrossRef]
- Kaegi, C.; Wuest, B.; Schreiner, J.; Steiner, U.C.; Vultaggio, A.; Matucci, A.; Crowley, C.; Boyman, O.; Pan, W.; Li, X.; et al. Efficacy and safety of rituximab in the treatment of autoimmune diseases: A systematic review and meta-analysis. Front. Immunol. 2019, 10, 1990. [Google Scholar] [CrossRef]
- Ling, J.; Xie, F.; Zhou, Q.; Ouyang, Q.; Li, L.; Zhao, W.; Liu, X. Case Series on the Efficacy and Safety of Tocilizumab in IVIG-Resistant Kawasaki Disease: A Retrospective Analysis of Five Patients. J. Inflamm. Res. 2024, 17, 10991–10998. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, M.; Kaneko, Y.; Takeuchi, T. Effectiveness of tocilizumab in Behcet’s disease: A systematic literature review. Semin. Arthritis Rheum. 2020, 50, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Liu, T.; Liu, Y.; Zhang, X.; Zhou, Y.; Su, Y. Efficacy and safety of tocilizumab in Behçet’s syndrome with refractory arterial lesions: A single-centre observational cohort study in China. Rheumatology 2022, 61, 2923–2930. [Google Scholar] [CrossRef] [PubMed]
- Khitri, M.Y.; Bartoli, A.; Maalouf, G.; Deroux, A.; Salvarani, C.; Emmi, G.; Karadag, O.; Espinosa, G.; Leclercq, M.; Simonini, G.; et al. Tocilizumab in Behçet Disease: A Multicenter Study of 30 Patients. J. Rheumatol. 2023, 50, 916–923. [Google Scholar] [CrossRef]
- Kougkas, N.; Bertsias, G.; Stratoudaki, R.; Avgoustidis, N. Successful treatment of Cogan’s syndrome with tocilizumab. Scand. J. Rheumatol. 2021, 50, 330–331. [Google Scholar] [CrossRef]
- Higashida-Konishi, M.; Akiyama, M.; Tabata, H.; Hama, S.; Oshige, T.; Izumi, K.; Oshima, H.; Okano, Y. Atypical Cogan’s Syndrome with Large-vessel Vasculitis Successfully Treated with Tocilizumab. Intern. Med. 2023, 62, 3413–3417. [Google Scholar] [CrossRef]
- Hara, K.; Umeda, M.; Segawa, K.; Akagi, M.; Endo, Y.; Koga, T.; Kawashiri, S.; Ichinose, K.; Nakamura, H.; Maeda, T.; et al. Atypical Cogan’s Syndrome Mimicking Giant Cell Arteritis Successfully Treated with Early Administration of Tocilizumab. Intern. Med. 2022, 61, 1265–1270. [Google Scholar] [CrossRef]
- Shibuya, M.; Fujio, K.; Morita, K.; Harada, H.; Kanda, H.; Yamamoto, K. Successful treatment with tocilizumab in a case of Cogan’s syndrome complicated with aortitis. Mod. Rheumatol. 2013, 23, 577–581. [Google Scholar] [CrossRef]
- Jančatová, D.; Zeleník, K.; Komínek, P.; Matoušek, P. Atypical Cogan’s syndrome: A case report and summary of current treatment options. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 428–431. [Google Scholar] [CrossRef]
- Almorza Hidalgo, T.; García González, A.J.; Castañeda, S.; Tomero, E.G.; Pablos Álvarez, J.L. Cogan syndrome: Descriptive analysis and clinical experience of 7 cases diagnosed and treated in two third level hospitals. Reumatol. Clin. 2021, 17, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hu, J.; Wu, D.; Wu, T.; Zhu, J. Tocilizumab Successfully Treating Refractory Hearing Impairment in a Patient with Cogan Syndrome: A Case Report and Review of the Literature. Ear Nose Throat J. 2024, 01455613241237079. [Google Scholar] [CrossRef] [PubMed]
- Okubo, N.; Oba, Y.; Ikuma, D.; Mizuno, H.; Yamanouchi, M.; Suwabe, T.; Ubara, Y.; Sawa, N. A case of polyarteritis nodosa with severe lower limb ulcer that was treated with prednisolone and tocilizumab. Mod. Rheumatol. Case Rep. 2025, 9, rxae085. [Google Scholar] [CrossRef]
- Ostrovršnik, J.; Hočevar, A.; Lestan, B.; Sodin Šemrl, S.; Lakota, K.; Tomšič, M. Long-term follow-up on tocilizumab treatment of AA amyloidosis secondary to polyarteritis nodosa. Amyloid 2016, 23, 260–261. [Google Scholar] [CrossRef]
- Hočevar, A.; Lestan, B.; Šemrl, S.S.; Lakota, K.; Kojc, N.; Potočnik, N.; Tomšič, M. AA amyloidosis in a polyarteritis nodosa patient treated with tocilizumab. Amyloid 2013, 20, 275–276. [Google Scholar] [CrossRef]
- Inoue, N.; Shimizu, M.; Mizuta, M.; Yachie, A. Successful treatment of tumor necrosis factor inhibitor-resistant cutaneous polyarteritis nodosa with tocilizumab. Pediatr. Int. 2020, 62, 753–755. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Rajderkar, D.A.; Modica, R.F. A Case of Polyarteritis Nodosa Associated with Vertebral Artery Vasculitis Treated Successfully with Tocilizumab and Cyclophosphamide. Case Rep. Pediatr. 2016, 2016, 7987081. [Google Scholar] [CrossRef]
- Carrión-Barberà, I.; Pros, A.; Salman-Monte, T.C.; Vílchez-Oya, F.; Sánchez-Schmidt, J.M.; Pérez-García, C.; Monfort, J. Safe and successful treatment of refractory polyarteritis nodosa with tocilizumab in a patient with past hepatitis B virus infection: A case-based review. Clin. Rheumatol. 2021, 40, 2065–2070. [Google Scholar] [CrossRef]
- Boistault, M.; Lopez Corbeto, M.; Quartier, P.; Berbel Arcobé, L.; Carsi Durall, A.; Aeschlimann, F.A. A young girl with severe polyarteritis nodosa successfully treated with tocilizumab: A case report. Pediatr. Rheumatol. Online J. 2021, 19, 168. [Google Scholar] [CrossRef]
- Krusche, M.; Ruffer, N.; Kötter, I. Tocilizumab treatment in refractory polyarteritis nodosa: A case report and review of the literature. Rheumatol. Int. 2019, 39, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Bodoki, L.; Végh, E.; Szekanecz, Z.; Szűcs, G. Tocilizumab Treatment in Polyarteritis Nodosa. Isr. Med. Assoc. J. 2019, 21, 560–562. [Google Scholar]
- Krusche, M.; Ruffer, N.; Schneider, U.; Meyer, M.; Burmester, G.; Kötter, I. Tocilizumab treatment for polyarteritis nodosa. Rheumatology 2020, 59, e63–e65. [Google Scholar] [CrossRef] [PubMed]
- Peking Union Medical College Hospital. Tocilizumab and Tofacitinib in the Treatment of Vascular Behçet’s Syndrome. ClinicalTrials.gov Identifier: NCT05845723. Updated 19 August 2024. Available online: https://clinicaltrials.gov/show/NCT05845723 (accessed on 25 January 2025).
- Benson, J.M.; Peritt, D.; Scallon, B.J.; Heavner, G.A.; Shealy, D.J.; Giles-Komar, J.M.; Mascelli, M.A. Discovery and mechanism of ustekinumab: A human monoclonal antibody targeting interleukin-12 and interleukin-23 for treatment of immune-mediated disorders. mAbs 2011, 3, 535–545. [Google Scholar] [CrossRef] [PubMed]
- London, J.; Régent, A.; Dion, J.; Jilet, L.; Jachiet, M.; Lidove, O.; Cohen-Aubart, F.; Aractingi, S.; Guégan, S.; Pennaforte, J.-L.; et al. Efficacy and safety of ustekinumab in Behçet disease: Results from the prospective phase 2 STELABEC trial. J. Am. Acad. Dermatol. 2022, 87, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Lopalco, G.; Fabiani, C.; Venerito, V.; Lapadula, G.; Iannone, F.; Cantarini, L. Ustekinumab efficacy and safety in mucocutaneous multi-refractory Behçet’s disease. Clin. Exp. Rheumatol. 2017, 35 (Suppl. S108), 130–131. [Google Scholar]
- Baerveldt, E.M.; Kappen, J.H.; Thio, H.B.; van Laar, J.A.; van Hagen, P.M.; Prens, E.P. Successful long-term triple disease control by ustekinumab in a patient with Behcet’s disease, psoriasis and hidradenitis suppurativa. Ann. Rheum. Dis. 2013, 72, 626–627. [Google Scholar] [CrossRef]
- Dick, A.D.; Tugal-Tutkun, I.; Foster, S.; Zierhut, M.; Liew, S.H.M.; Bezlyak, V.; Androudi, S. Secukinumab in the Treatment of Noninfectious Uveitis: Results of Three Randomized, Controlled Clinical Trials. Ophthalmology 2013, 120, 777–787. [Google Scholar] [CrossRef]
- Patel, D.D.; Lee, D.M.; Kolbinger, F.; Antoni, C. Effect of IL-17A blockade with secukinumab in autoimmune diseases. Ann. Rheum. Dis. 2013, 72 (Suppl. S2), ii116–ii123. [Google Scholar] [CrossRef]
- Letko, E.; Yeh, S.; Foster, C.S.; Pleyer, U.; Brigell, M.; Grosskreutz, C.L. Efficacy and safety of intravenous secukinumab in noninfectious uveitis requiring steroid-sparing immunosuppressive therapy. Ophthalmology 2015, 122, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Fagni, F.; Bettiol, A.; Talarico, R.; Lopalco, G.; Silvestri, E.; Urban, M.L.; Russo, P.A.J.; Di Scala, G.; Emmi, G.; Prisco, D. Long-term effectiveness and safety of secukinumab for treatment of refractory mucosal and articular Behçet’s phenotype: A multicentre study. Ann. Rheum. Dis. 2020, 79, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Vitale, A.; Insalaco, A.; Sfriso, P.; Lopalco, G.; Emmi, G.; Cattalini, M.; Manna, R.; Cimaz, R.; Priori, R.; Talarico, R.; et al. A snapshot on the on-label and off-label use of the interleukin-1 inhibitors in Italy among rheumatologists and pediatric rheumatologists: A nationwide multi-center retrospective observational study. Front. Pharmacol. 2016, 7, 380. [Google Scholar] [CrossRef]
- Cavalli, G.; Dinarello, C.A. Anakinra Therapy for Non-cancer Inflammatory Diseases. Front. Pharmacol. 2018, 9, 1157, Erratum in Front. Pharmacol. 2019, 10, 148. [Google Scholar] [CrossRef]
- Yang, J.; Jain, S.; Capparelli, E.V.; Best, B.M.; Son, M.B.; Baker, A.; Newburger, J.W.; Franco, A.; Printz, B.F.; He, F.; et al. Anakinra Treatment in Patients with Acute Kawasaki Disease with Coronary Artery Aneurysms: A Phase I/IIa Trial. J. Pediatr. 2022, 243, 173–180. [Google Scholar] [CrossRef]
- Anakinra for Behcet’s Disease. ClinicalTrials.gov. Identifier: NCT01441076. Updated 23 October 2024. Available online: https://clinicaltrials.gov/study/NCT01441076 (accessed on 28 January 2025).
- Broderick, C.; Kobayashi, S.; Suto, M.; Ito, S.; Kobayashi, T. Intravenous immunoglobulin for the treatment of Kawasaki disease. Cochrane Database Syst. Rev. 2023, 1, CD014884. [Google Scholar] [CrossRef]
- Cantarini, L.; Vitale, A.; Scalini, P.; Dinarello, C.A.; Rigante, D.; Franceschini, R.; Simonini, G.; Borsari, G.; Caso, F.; Lucherini, O.M.; et al. Anakinra treatment in drug-resistant Behcet’s disease: A case series. Clin. Rheumatol. 2015, 34, 1293–1301. [Google Scholar] [CrossRef]
- Blonz, G.; Lacroix, S.; Benbrik, N.; Warin-Fresse, K.; Masseau, A.; Trewick, D.; Hamidou, M.; Stephan, J.; Néel, A. Severe Late-Onset Kawasaki Disease Successfully Treated with Anakinra. J. Clin. Rheumatol. 2020, 26, e42–e43. [Google Scholar] [CrossRef]
- Gambacorta, A.; Buonsenso, D.; De Rosa, G.; Lazzareschi, I.; Gatto, A.; Brancato, F.; Pata, D.; Valentini, P. Resolution of Giant Coronary Aneurisms in a Child with Refractory Kawasaki Disease Treated with Anakinra. Front. Pediatr. 2020, 8, 195. [Google Scholar] [CrossRef]
- Bossi, G.; Codazzi, A.C.; Vinci, F.; Clerici, E.; Regalbuto, C.; Crapanzano, C.; Veraldi, D.; Moiraghi, A.; Marseglia, G.L. Efficacy of Anakinra on Multiple Coronary Arteries Aneurysms in an Infant with Recurrent Kawasaki Disease, Complicated by Macrophage Activation Syndrome. Children 2022, 9, 672. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Manubens, J.; Gelman, A.; Franch, N.; Teodoro, S.; Palacios, J.R.; Rudi, N.; Rivera, J.; Antón, J. A child with resistant Kawasaki disease successfully treated with anakinra: A case report. BMC Pediatr. 2017, 17, 102. [Google Scholar] [CrossRef] [PubMed]
- Shafferman, A.; Birmingham, J.D.; Cron, R.Q. High dose Anakinra for treatment of severe neonatal Kawasaki disease: A case report. Pediatr. Rheumatol. 2014, 12, 26. [Google Scholar] [CrossRef]
- Maggio, M.C.; Cimaz, R.; Alaimo, A.; Comparato, C.; Di Lisi, D.; Corsello, G. Kawasaki disease triggered by parvovirus infection: An atypical case report of two siblings. J. Med. Case Rep. 2019, 13, 104. [Google Scholar] [CrossRef] [PubMed]
- Mastrolia, M.V.; Abbati, G.; Signorino, C.; Pagnini, I.; Simonini, G.; De Benedetti, F.; Bracaglia, C. Early anti IL-1 treatment replaces steroids in refractory Kawasaki disease: Clinical experience from two case reports. Ther. Adv. Musculoskelet Dis. 2021, 13, 1759720X211002593. [Google Scholar] [CrossRef]
- Barbara, Z.; Ellenwood, S.P.; Loe, E.D.; Choi, J.; Ryan, K.; Joseph, N. Kawasaki Disease Complicated by Salmonella oranienburg Coinfection. Case Rep. Pediatr. 2021, 2021, 5584514. [Google Scholar] [CrossRef]
- Ono, R.; Tominaga, T.; Nonaka, T.; Takamura, Y.; Oishi, K.; Shiraishi, T.; Hashimoto, S.; Noda, K.; Sawai, T.; Okano, S.; et al. Intestinal Behçet’s and suspected intestinal Behçet’s disease: A report of four surgical cases. Surg. Case Rep. 2024, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Tremoulet, A.H. Pilot Study of Atorvastatin and Anakinra in Children with Coronary artery Abnormalities Secondary to Kawasaki Disease. ClinicalTrials.gov Identifier NCT04747847. Updated 18 January 2024. Available online: https://clinicaltrials.gov/study/NCT04747847 (accessed on 25 January 2025).
- Assistance Publique—Hôpitaux de Paris. A Trial Comparing the Efficacy and Safety of Anakinra Versus Intravenous Immunoglobulin (IVIG) Retreatment, in Patients with Kawasaki Disease Who Failed to Respond to Initial Standard IVIG Treatment (ANACOMP). ClinicalTrials.gov identifier NCT04656184. Ongoing. Updated 28 February 2024. Available online: https://clinicaltrials.gov/study/NCT04656184 (accessed on 25 January 2025).
- Simmoni, G. Meyer Children’s Hospital IRCCS. Non Inferiority Kawasaki Trial with Anakinra (NIKITA). ClinicalTrials.gov Identifier: NCT06697431. Available online: https://clinicaltrials.gov/study/NCT06697431 (accessed on 25 January 2025).
- Dubois, E.A.; Rissmann, R.; Cohen, A.F. Rilonacept and canakinumab. Br. J. Clin. Pharmacol. 2011, 71, 639–641. [Google Scholar] [CrossRef]
- Burns, J.C.; Koné-Paut, I.; Kuijpers, T.; Shimizu, C.; Tremoulet, A.; Arditi, M. Found in Translation: International initiatives pursuing interleukin-1 blockade for treatment of acute Kawasaki Disease. Arthritis Rheumatol. 2017, 69, 268–276. [Google Scholar] [CrossRef]
- Kisla Ekinci, R.M.; Balci, S.; Bisgin, A.; Hershfield, M.; Atmis, B.; Dogruel, D.; Yilmaz, M. Renal Amyloidosis in Deficiency of Adenosine Deaminase 2: Successful Experience with Canakinumab. Pediatrics 2018, 142, e20180948. [Google Scholar] [CrossRef]
- Emmi, G.; Silvestri, E.; Ciucciarelli, L.; Squatrito, D.; Emmi, L. Reply: Anti-IL1 blocking agents in drug-resistant Behçet’s syndrome: Our little case series. Clin. Exp. Rheumatol. 2014, 32, S172. [Google Scholar]
- Hashemzadeh, M.; Furukawa, M.; Goldsberry, S.; Movahed, M.R. Chemical structures and mode of action of intravenous glycoprotein IIb/IIIa receptor blockers: A review. Exp. Clin. Cardiol. 2008, 13, 192–197. [Google Scholar]
- Chandwaney, R.H.; Stathopoulos, T.; Sunew, J.; McPherson, D.; Davidson, C.J. Adjunctive therapies in the cath lab. Successful thrombolysis using the combination of tissue plasminogen activator and abciximab in an adult with Kawasaki’s disease. J. Invasive Cardiol. 2001, 13, 651–653. [Google Scholar]
- Johnson, P.N.; Kuhn, R.J. Combination thrombolytic and anti-platelet therapies in an infant with incomplete kawasaki disease and coronary aneurysms. J. Pediatr. Pharmacol. Ther. 2008, 13, 242–250. [Google Scholar] [CrossRef]
- Etheridge, S.P.; Tani, L.Y.; Minich, L.L.; Revenaugh, J.R. Platelet glycoprotein IIb/IIIa receptor blockade therapy for large coronary aneurysms and thrombi in Kawasaki disease. Catheter. Cardiovasc. Diagn. 1998, 45, 264–268. [Google Scholar] [CrossRef]
- Jone, P.N.; Tapia, D.; Davidson, J.; Fagan, T.E.; Browne, L.; Ing, R.J.; Kay, J. Successful Treatment of Myocardial Infarction in an Infant with Kawasaki Disease. Semin. Cardiothorac. Vasc. Anesth. 2015, 19, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Durall, A.L.; Phillips, J.R.; Weisse, M.E.; Mullett, C.J. Infantile Kawasaki disease and peripheral gangrene. J. Pediatr. 2006, 149, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Mok, G.C.; Sung, R.Y.; Yam, M.C.; Arifi, A.A.; Lam, W.W.; Fok, T.F. A child with Kawasaki disease who survived after rupture of a coronary artery aneurysm. Eur. J. Pediatr. 2003, 162, 634–636. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.; Liu, X.; Luo, J.; Gao, C.; Li, X. Low-dose IL-2 effectively restored decreased regulatory T cells in patients with Behçet’s disease. Clin. Exp. Rheumatol. 2021, 39, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhao, Y.; Chen, X.; Zhuang, Z.; Li, X.; Shen, E. Low-dose IL-2 therapy in autoimmune diseases: An update review. Int. Rev. Immunol. 2024, 43, 113–137. [Google Scholar] [CrossRef]
- Low-dose IL-2 Treatment on Behcet’s Disease. ClinicalTrials.gov. Identifier: NCT04065672. Updated 28 January 2025. Available online: https://clinicaltrials.gov/study/NCT04065672 (accessed on 28 January 2025).
- Liu, T.; Zhou, W.; Zhu, Y.; Xia, W.; Chen, J.; Xiao, X.; Huang, B.; Feng, R.; Yao, H.; Chen, S.; et al. Efficacy and Safety of Low-Dose Interleukin-2 for Behcet’s Syndrome: A Phase 2 Randomized, Double-Blind, Placebo-Controlled Clinical Trial [Preprint]. Nature Portfolio. 2024. [Google Scholar] [CrossRef]
- Lorenzon, R.; Ribet, C.; Pitoiset, F.; Aractingi, S.; Banneville, B.; Beaugerie, L.; Berenbaum, F.; Cacoub, P.; Champey, J.; Chazouilleres, O.; et al. The universal effects of low-dose interleukin-2 across 13 autoimmune diseases in a basket clinical trial. J. Autoimmun. 2024, 144, 103172. [Google Scholar] [CrossRef]
- Bluestone, J.A.; St Clair, E.W.; Turka, L.A. CTLA4Ig: Bridging the basic immunology with clinical application. Immunity 2006, 24, 233–238. [Google Scholar] [CrossRef]
- Maciel, M.L.; Novello, M.; Neves, F.S. Short-term efficacy of abatacept in the treatment of refractory ocular and cutaneous Behçet’s disease. Rheumatol. Adv. Pract. 2017, 1, rkx004. [Google Scholar] [CrossRef]
- NCT01693640. A Pilot Study of the Safety and Efficacy of Abatacept Injections in the Treatment of Behcet’s Syndrome. ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT01693640 (accessed on 19 February 2025).
- Ghoreschi, K.; Jesson, M.I.; Li, X.; Lee, J.L.; Ghosh, S.; Alsup, J.W.; Warner, J.D.; Tanaka, M.; Steward-Tharp, S.M.; Gadina, M.; et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J. Immunol. 2011, 186, 4234–4243. [Google Scholar] [CrossRef]
- Roy, D.; Sathyanarayana, V.A.; Nagaraju, B.; Rao, V.K.R. Tofacitinib as monotherapy in cutaneous polyarteritis nodosa: A case series. Rheumatol. Adv. Pract. 2023, 7, rkad049. [Google Scholar] [CrossRef]
- Zou, J.; Cai, J.F.; Ye, J.F.; Guan, J.L. Tofacitinib as an alternative therapy for refractory intestinal Behçet’s syndrome. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X221124014. [Google Scholar] [CrossRef]
- Liu, J.; Hou, Y.; Sun, L.; Li, C.; Li, L.; Zhao, Y.; Zeng, X.; Zhang, F.; Zheng, W. A pilot study of tofacitinib for refractory Behçet’s syndrome. Ann. Rheum. Dis. 2020, 79, 1517–1520. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, S.; Shao, C.; Liu, Y. Cogan’s syndrome is more than just keratitis: A case-based literature review. BMC Ophthalmol. 2023, 23, 212. [Google Scholar] [CrossRef]
- Rimar, D.; Alpert, A.; Starosvetsky, E.; Rosner, I.; Slobodin, G.; Rozenbaum, M.; Kaly, L.; Boulman, N.; Awisat, A.; Ginsberg, S.; et al. Tofacitinib for polyarteritis nodosa: A tailored therapy. Ann. Rheum. Dis. 2016, 75, 2214–2216. [Google Scholar] [CrossRef]
- Lin, M.; Tang, J.; Huang, Z.; Gao, X.; Chao, K. Gastrointestinal: Refractory parastomal ulcers of Behcet’s disease responsive to tofacitinib. J. Gastroenterol. Hepatol. 2023, 38, 485. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Tang, Y.; Wang, S.; Cui, L.; Sun, X.; Wang, Z.; Liu, Y. Case report: Refractory intestinal Behçet’s syndrome successfully treated with tofacitinib: A report of four cases. Front. Immunol. 2022, 13, 981502. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.R.; Wong, T.W.; Hsu, S.M. Extended-release tofacitinib for refractory Behçet disease: A case report. Medicine 2022, 101, e29189. [Google Scholar] [CrossRef] [PubMed]
- Kubo, S.; Nakayamada, S.; Sakata, K.; Kitanaga, Y.; Ma, X.; Lee, S.; Ishii, A.; Yamagata, K.; Nakano, K.; Tanaka, Y. Janus Kinase Inhibitor Baricitinib Modulates Human Innate and Adaptive Immune System. Front. Immunol. 2018, 9, 1510. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, Z.; Yao, Z.; Guo, Y. Successful treatment of cutaneous polyarteritis nodosa with baricitinib. J. Dermatol. Treat. 2024, 35, 2417965. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Liu, W.; Wang, Y.; Liu, J.; Zhang, L.; Zhang, S.; Tian, X.; Zhao, Y.; Zheng, W.; et al. Baricitinib for the treatment of refractory vascular Behçet’s disease. Clin. Immunol. 2023, 250, 109298. [Google Scholar] [CrossRef]
- Liu, J.; Yu, X.; Wang, Z.; Liu, W.; Liu, X.; Wang, X.; Zhang, M.; Zhao, Y.; Zhang, F.; Yang, H.; et al. Baricitinib for the treatment of intestinal Behçet’s disease: A pilot study. Clin. Immunol. 2023, 247, 109241. [Google Scholar] [CrossRef]
- Ramanan, A.V.; Guly, C.M.; Keller, S.Y.; Schlichting, D.E.; de Bono, S.; Liao, R.; Quartier, P. Clinical effectiveness and safety of baricitinib for the treatment of juvenile idiopathic arthritis-associated uveitis or chronic anterior antinuclear antibody-positive uveitis: Study protocol for an open-label, adalimumab active-controlled phase 3 clinical trial (JUVE-BRIGHT). Trials 2021, 22, 689. [Google Scholar] [CrossRef]
- Ito, H.; Noda, K.; Saruta, M.; Kurosaka, D. Case report: Peristomal pyoderma gangrenosum complicated by rheumatoid arthritis and Behçet’s disease successfully treated with baricitinib. Int. J. Rheum. Dis. 2024, 27, e15275. [Google Scholar] [CrossRef]
- Namour, F.; Anderson, K.; Nelson, C.; Tasset, C. Filgotinib: A Clinical Pharmacology Review. Clin. Pharmacokinet. 2022, 61, 819–832. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Watkins, T.R.; Nguyen, Q.D.; Sharma, S.; Scales, D.K.; Dacey, M.S.; Shah, R.E.; Chu, D.S.; Grewal, D.S.; Faia, L.J.; et al. Filgotinib in Active Noninfectious Uveitis: The HUMBOLDT Randomized Clinical Trial. JAMA Ophthalmol. 2024, 142, 789–797. [Google Scholar] [CrossRef]
- Mohamed, M.F.; Bhatnagar, S.; Parmentier, J.M.; Nakasato, P.; Wung, P. Upadacitinib: Mechanism of action, clinical, and translational science. Clin. Transl. Sci. 2024, 17, e13688. [Google Scholar] [CrossRef] [PubMed]
- Nakabayashi, A.; Iguchi, E.; Kim, D.S.; Siripongvutikorn, Y.; Nishigaichi, A.; Yoshimura, M.; Takamatsu, H.; Ohshima, S. Efficacy of Upadacitinib in refractory Polyarteritis Nodosa: A case report. Oxf. Med. Case Rep. 2025, 2025, omae199. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Li, J.; Liu, T.; Li, Y. Upadacitinib for Refractory Behçet’s Syndrome: A Multi-Center, Prospective, Open-label, Pilot Study. Arthritis Rheumatol. 2024, 76 (Suppl. S9), 5121–5122. Available online: https://acrabstracts.org/abstract/upadacitinib-for-refractory-behcets-syndrome-a-multi-center-prospective-open-label-pilot-study/ (accessed on 25 January 2025).
- Vitale, A.; Palacios-Olid, J.; Caggiano, V.; Ragab, G.; Hernández-Rodríguez, J.; Pelegrín, L.; Mejía-Salgado, G.; Zarate-Pinzón, L.; Gentileschi, S.; Sota, J.; et al. Efficacy and safety of Janus kinase inhibitors in non-infectious inflammatory ocular diseases: A prospective cohort study from the international AIDA network registries. Front. Med. 2024, 11, 1439338. [Google Scholar] [CrossRef] [PubMed]
- Tao, T.; He, D.; Peng, X.; Huang, Z.; Su, W. Successful Remission with Upadacitinib in Two Patients with Anti-TNF-Refractory Macular Edema Associated with Behçet’s Uveitis. Ocul. Immunol. Inflamm. 2024, 32, 1897–1900. [Google Scholar] [CrossRef]
- Kraev, K.; Uchikov, P.; Hristov, B.; Kraeva, M.; Basheva-Kraeva, Y.; Popova-Belova, S.; Sandeva, M.; Chakarov, D.; Dragusheva, S.; Geneva-Popova, M. Coexistence of ankylosing spondylitis and Behçet’s disease: Successful treatment with upadacitinib. Immun. Inflamm. Dis. 2024, 12, e1242. [Google Scholar] [CrossRef]
- Cui, F.; Shen, L.; Li, L.; Wang, H.; Wang, F.; Bi, S.; Liu, J.; Zhang, G.; Wang, F.; Zheng, H.; et al. Prevention of chronic hepatitis B after 3 decades of escalating vaccination policy, China. Emerg. Infect. Dis. 2017, 23, 765–772. [Google Scholar] [CrossRef]
- Pagnoux, C.; Mahr, A.; Cohen, P.; Guillevin, L. Presentation and outcome of gastrointestinal involvement in systemic necrotizing vasculitides: Analysis of 62 patients with polyarteritis nodosa, microscopic polyangiitis, Wegener granulomatosis, Churg-Strauss syndrome, or rheumatoid arthritis-associated vasculitis. Medicine 2005, 84, 115–128. [Google Scholar]
- Criado, P.R.; Marques, G.F.; Morita, T.C.; de Carvalho, J.F. Epidemiological, clinical and laboratory profiles of cutaneous polyarteritis nodosa patients: Report of 22 cases and literature review. Autoimmun. Rev. 2016, 15, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Reid, R.; Roberts, F.; MacDuff, E. (Eds.) Chapter 7—Cardiovascular Diseases. In Pathology Illustrated, 7th ed.; Churchill Livingstone: Amsterdam, The Netherlands, 2011; pp. 157–244. [Google Scholar] [CrossRef]
- Grau, G.E.; Roux-Lombard, P.; Gysler, C.; Lambert, C.; Lambert, P.H.; Dayer, J.M.; Guillevin, L. Serum cytokine changes in systemic vasculitis. Immunology 1989, 68, 196–198. [Google Scholar] [PubMed]
- Kawakami, T.; Takeuchi, S.; Soma, Y. Serum levels of interleukin-6 in patients with cutaneous polyarteritis nodosa. Acta Derm Venereol. 2012, 92, 322–323. [Google Scholar] [CrossRef]
- Guillevin, L.; Mahr, A.; Callard, P.; Godmer, P.; Pagnoux, C.; Leray, E.; Cohen, P. Hepatitis B virus-associated polyarteritis nodosa: Clinical characteristics, outcome, and impact of treatment in 115 patients. Medicine 2005, 84, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Bursi, R.; Cafaro, G.; Perricone, C.; Riccucci, I.; Calvacchi, S.; Gerli, R.; Bartoloni, E. Contribution of Janus-Kinase/Signal Transduction Activator of Transcription Pathway in the Pathogenesis of Vasculitis: A Possible Treatment Target in the Upcoming Future. Front. Pharmacol. 2021, 12, 635663. [Google Scholar] [CrossRef]
- Schwartz, D.M.; Kanno, Y.; Villarino, A.; Ward, M.; Gadina, M.; O’Shea, J.J. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 2017, 17, 78. [Google Scholar] [CrossRef]
- Reddy, V.; Cohen, S. JAK Inhibitors: What Is New? Curr. Rheumatol. Rep. 2020, 22, 50. [Google Scholar] [CrossRef]
- Kostik, M.M.; Raupov, R.K.; Suspitsin, E.N.; Isupova, E.A.; Gaidar, E.V.; Gabrusskaya, T.V.; Kaneva, M.A.; Snegireva, L.S.; Likhacheva, T.S.; Miulkidzhan, R.S.; et al. The Safety and Efficacy of Tofacitinib in 24 Cases of Pediatric Rheumatic Diseases: Single Centre Experience. Front. Pediatr. 2022, 10, 820586. [Google Scholar] [CrossRef] [PubMed]
- Noval Rivas, M.; Arditi, M. Kawasaki disease: Pathophysiology and insights from mouse models. Nat. Rev. Rheumatol. 2020, 16, 391–405. [Google Scholar] [CrossRef]
- Sagiv, E.; Slee, A.; Buffone, A.; Choueiter, N.F.; Dahdah, N.S.; Portman, M.A. Etanercept with IVIg for acute Kawasaki disease: A long-term follow-up on the EATAK trial. Cardiol. Young 2023, 33, 613–618. [Google Scholar] [CrossRef]
- Nomura, O.; Fukuda, S.; Ota, E.; Ono, H.; Ishiguro, A.; Kobayashi, T. Monoclonal antibody and anti-cytokine biologics for Kawasaki disease: A systematic review and meta-analysis. Semin. Arthritis Rheum. 2021, 51, 1045–1056. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Fukazawa, R.; Nagi-Miura, N.; Ohno, N.; Suzuki, N.; Katsube, Y.; Kamisago, M.; Akao, M.; Watanabe, M.; Hashimoto, K.; et al. Interleukin-1beta Inhibition Attenuates Vasculitis in a Mouse Model of Kawasaki Disease. J. Nippon. Med. Sch. 2019, 86, 108–116. [Google Scholar] [CrossRef]
- Touzot, M.; Cacoub, P.; Bodaghi, B.; Soumelis, V.; Saadoun, D. IFN-a induces IL-10 production and tilt the balance between Th1 and Th17 in Behçet disease. Autoimmun. Rev. 2015, 14, 370e375. [Google Scholar] [CrossRef]
- Deniz, R.; Tulunay-Virlan, A.; Ture Ozdemir, F.; Unal, A.U.; Ozen, G.; Alibaz-Oner, F.; Aydin-Tatli, I.; Mumcu, G.; Ergun, T.; Direskeneli, H. Th17-Inducing Conditions Lead to in vitro Activation of Both Th17 and Th1 Responses in Behcet’s Disease. Immunol. Investig. 2017, 46, 518–525. [Google Scholar] [CrossRef]
- Evereklioglu, C.; Er, H.; Türköz, Y.; Cekmen, M. Serum levels of TNF-alpha, sIL-2R, IL-6, and IL-8 are increased and associated with elevated lipid peroxidation in patients with Behçet’s disease. Mediat. Inflamm. 2002, 11, 87–93. [Google Scholar] [CrossRef]
- Turan, B.; Gallati, H.; Erdi, H.; Gurler, A.; Michel, B.A.; Villiger, P.M. Systemic levels of the T cell regulatory cytokines IL-10 and IL-12 in Behçet’s disease; soluble TNFR-75 as a biological marker of disease activity. J. Rheumatol. 1997, 24, 128–132. [Google Scholar] [PubMed]
- Hamzaoui, K.; Houman, H.; Ben Dhifallah, I.; Kamoun, M.; Hamzaoui, A. Serum BAFF levels and skin mRNA expression in patients with Behçet’s disease. Clin. Exp. Rheumatol. 2008, 26 (Suppl. S50), S64–S71. [Google Scholar] [PubMed]
- Le Joncour, A.; Régnier, P.; Maciejewski-Duval, A.; Charles, E.; Barete, S.; Fouret, P.; Rosenzwajg, M.; Klatzmann, D.; Cacoub, P.; Saadoun, D. Reduction of Neutrophil Activation by Phosphodiesterase 4 Blockade in Behçet’s Disease. Arthritis Rheumatol. 2023, 75, 1628–1637. [Google Scholar] [CrossRef]
- Hatemi, G.; Mahr, A.; Ishigatsubo, Y.; Song, Y.-W.; Takeno, M.; Kim, D.; Melikoğlu, M.; Cheng, S.; McCue, S.; Paris, M.; et al. Apremilast for oral ulcers associated with Behçet’s syndrome: A phase 3 randomized, placebo-controlled study. N. Engl. J. Med. 2019, 381, 1918–1928. [Google Scholar] [CrossRef]
- Lavalle, S.; Caruso, S.; Foti, R.; Gagliano, C.; Cocuzza, S.; La Via, L.; Parisi, F.M.; Calvo-Henriquez, C.; Maniaci, A. Behçet’s Disease, Pathogenesis, Clinical Features, and Treatment Approaches: A Comprehensive Review. Medicina 2024, 60, 562. [Google Scholar] [CrossRef] [PubMed]
- Hatemi, G.; Mahr, A.; Takeno, M.; Kim, D.Y.; Saadoun, D.; Direskeneli, H.; Melikoğlu, M.; Cheng, S.; McCue, S.; Paris, M.; et al. Apremilast for oral ulcers associated with active Behçet’s syndrome over 68 weeks: Long-term results from a phase 3 randomised clinical trial. Clin. Exp. Rheumatol. 2021, 39 (Suppl. S132), 80–87. [Google Scholar] [CrossRef] [PubMed]
- Hamuryudan, V.; Mat, C.; Saip, S.; Ozyazgan, Y.; Siva, A.; Yurdakul, S.; Zwingenberger, K.; Yazici, H. Thalidomide in the treatment of the mucocutaneous lesions of the Behçet syndrome. A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 1998, 128, 443–450. [Google Scholar] [CrossRef]
- Alpsoy, E.; Durusoy, C.; Yilmaz, E.; Ozgurel, Y.; Ermis, O.; Yazar, S.; Basaran, E. Interferon alfa-2a in the treatment of Behçet disease: A randomized placebo-controlled and double-blind study. Arch. Dermatol. 2002, 138, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Hatemi, G.; Christensen, R.; Bang, D.; Bodaghi, B.; Celik, A.F.; Fortune, F.; Gaudric, J.; Gul, A.; Kötter, I.; Leccese, P.; et al. 2018 update of the EULAR recommendations for the management of Behçet’s syndrome. Ann. Rheum. Dis. 2018, 77, 808–818. [Google Scholar] [CrossRef]
- Emmi, G.; Bettiol, A.; Hatemi, G.; Prisco, D. Behçet’s syndrome. Lancet 2024, 403, 1093–1108. [Google Scholar] [CrossRef]
- Desbois, A.C.; Biard, L.; Addimanda, O.; Lambert, M.; Hachulla, E.; Launay, D.; Ackermann, F.; Pérard, L.; Hot, A.; Maurier, F.; et al. Efficacy of anti-TNF alpha in severe and refractory major vessel involvement of Behcet’s disease: A multicenter observational study of 18 patients. Clin. Immunol. 2018, 197, 54–59. [Google Scholar] [CrossRef]
- Grayson, P.C.; Yazici, Y.; Merideth, M.; Sen, H.N.; Davis, M.; Novakovich, E.; Joyal, E.; Goldbach-Mansky, R.; Sibley, C.H. Treatment of mucocutaneous manifestations in Behçet’s disease with anakinra: A pilot open-label study. Arthritis Res Ther. 2017, 19, 69. [Google Scholar] [CrossRef]
- Murphy, R.; Moots, R.J.; Brogan, P.; Çelik, A.F.; Clement-Jones, M.; Coulson, I.; Croft, A.P.; Crozier, S.; Forrest, L.; Harrold, J.; et al. British Association of Dermatologists and British Society for Rheumatology living guideline for managing people with Behçets 2024. Br. J. Dermatol. 2024, 191, e8–e25. [Google Scholar] [CrossRef]
- Hatemi, G.; Tukek, N.B.; Esatoglu, S.N.; Ozguler, Y.; Taflan, S.S.; Uygunoglu, U.; Melikoglu, M.; Ugurlu, S.; Fresko, I.; Siva, A.; et al. Infliximab for vascular involvement in Behçet’s syndrome. Clin. Immunol. 2023, 253, 109682. [Google Scholar] [CrossRef]
- Toledo-Samaniego, N.; Oblitas, C.M.; Peñaloza-Martínez, E.; Del-Toro-Cervera, J.; Alvarez-Sala-Walther, L.A.; Demelo-Rodríguez, P.; Galeano-Valle, F. Arterial and venous involvement in Behçet’s syndrome: A narrative review. J Thromb Thrombolysis. 2022, 54, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Alibaz-Oner, F.; Direskeneli, H. Advances in the Treatment of Behcet’s Disease. Curr. Rheumatol. Rep. 2021, 23, 47. [Google Scholar] [CrossRef]
- Yurtdas, M.; Kasifoglu, T. Cardiovascular involvement in Behçet’s disease. Patholog. Res. Int. 2012, 2012, 1–8. [Google Scholar] [CrossRef]
- Sulu, B.; Hatemi, G. New and future perspectives in Behçet’s syndrome. Arch. Rheumatol. 2024, 39, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Kang, N.; Yu, X.; Zhang, X.; Duan, Q.; Ma, X.; Zhao, Q.; Wang, Z.; Wang, X.; Liu, Y.; et al. TNF inhibitors target a mevalonate metabolite/TRPM2/calcium signaling axis in neutrophils to dampen vasculitis in Behçet’s disease. Nat. Commun. 2024, 15, 9261. [Google Scholar] [CrossRef] [PubMed]
- Emmi, G.; Vitale, A.; Silvestri, E.; Boddi, M.; Becatti, M.; Fiorillo, C.; Fabiani, C.; Frediani, B.; Emmi, L.; Di Scala, G.; et al. Adalimumab-Based Treatment Versus Disease-Modifying Antirheumatic Drugs for Venous Thrombosis in Behçet’s Syndrome: A Retrospective Study of Seventy Patients with Vascular Involvement. Arthritis Rheumatol. 2018, 70, 1500–1507. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, S.Y.; Kim, K.N.; Jung, J.K.; Chung, W.T. Adalimumab treatment for life threatening pulmonary artery aneurysm in Behçet disease: A case report. Clin. Rheumatol. 2010, 29, 91–93. [Google Scholar] [CrossRef]
- Caruso, P.; Moretti, R. Focus on neuro-Behçet’s disease: A review. Neurol. India 2018, 66, 1619–1628. [Google Scholar] [CrossRef]
- Zając, H.; Turno-Kręcicka, A. Ocular Manifestations of Behçet’s Disease: An Update on Diagnostic Challenges and Disease Management. J. Clin. Med. 2021, 10, 5174. [Google Scholar] [CrossRef]
- Bettiol, A.; Hatemi, G.; Vannozzi, L.; Barilaro, A.; Prisco, D.; Emmi, G. Treating the Different Phenotypes of Behçet’s Syndrome. Front. Immunol. 2019, 10, 2830. [Google Scholar] [CrossRef]
- Guan, X.; Zhao, Z.; Xin, M.; Xia, G.; Yang, Q.; Fu, M. Long-term efficacy, safety, and cumulative retention rate of antitumor necrosis factor-alpha treatment for patients with Behcet’s uveitis: A systematic review and meta-analysis. Int. J. Rheum. Dis. 2024, 27, e15096. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Gao, C.; Zhang, C.; Di, X.; Liang, W.; Sun, W.; Wang, Q.; Zheng, Z. Behcet’s disease with peripheral nervous system involvement successfully treated with golimumab: A case report and review of the literature. Rheumatol. Int. 2021, 41, 197–203. [Google Scholar] [CrossRef]
- Zhao, C.; Li, C.; Duan, F.J.; Yan, Q.; Zhang, Z.; Du, Y.; Zhang, W. Case Report: Repeated Low-Dose Rituximab Treatment Is Effective in Relapsing Neuro Behçet’s Disease. Front. Neurol. 2021, 12, 595984. [Google Scholar] [CrossRef] [PubMed]
- Jade, J.; Chung, K.; Arendse, M.; Hussain, Z.; White, D. Neuro-Behçet’s disease presenting with tumour-like lesions and responding to rituximab. J. Clin. Neurosci. 2016, 32, 139–141. [Google Scholar] [CrossRef]
- Messina, M.J.; Rodegher, M.; Scotti, R.; Martinelli, V. Treatment of myelitis in Behçet’s disease with rituximab. BMJ Case Rep. 2014, 2014, bcr2014204366. [Google Scholar] [CrossRef]
- Graßhoff, H.; Comdühr, S.; Monne, L.R.; Müller, A.; Lamprecht, P.; Riemekasten, G.; Humrich, J.Y. Low-Dose IL-2 Therapy in Autoimmune and Rheumatic Diseases. Front. Immunol. 2021, 12, 648408. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Full Prescribing Information: PROLEUKIN (Aldesleukin) for Injection, for Intravenous Use. Published Online February 2024. Available online: https://nctr-crs.fda.gov/fdalabel/services/spl/set-ids/f3c516ad-d405-4fbe-af6a-962080dbfa7d/spl-doc?hl (accessed on 1 January 2025).
- Sharma, V.; Deo, P.; Sharma, A. Deficiency of adenosine deaminase 2 (DADA2): Review. Best Pract. Res. Clin. Rheumatol. 2023, 37, 101844. [Google Scholar] [CrossRef] [PubMed]
- Özçelik, S.; Aksu, K.; Kabasakal, Y.; Ekinci, N.S.; Alpsoy, E.; Karakas, A.A.; Yilmaz, S.B.; Yegin, O. The role of IL-17 inhibition in neuro-Behçet’s disease: A case series and literature review. Front. Neurol. 2021, 12, 595984. [Google Scholar]
- Liu, J.; Tian, J.; Wang, Z.; Wang, L.; Huang, C.; Zhou, J.; Zeng, X.; Zhao, Y.; Zheng, W. Secukinumab in the treatment of parenchymal neuro-Behçet’s syndrome. Rheumatology 2022, 61, e277–e279. [Google Scholar] [CrossRef]
- Schena, F.; Penco, F.; Volpi, S.; Pastorino, C.; Caorsi, R.; Kalli, F.; Fenoglio, D.; Salis, A.; Bertoni, A.; Prigione, I.; et al. Dysregulation in B-cell responses and T follicular helper cell function in ADA2 deficiency patients. Eur. J. Immunol. 2021, 51, 206–219. [Google Scholar] [CrossRef]
- Eli Lilly and Company. A Study of Baricitinib (LY3009104) in Participants from 2 Years to Less Than 18 Years Old with Active JIA-Associated Uveitis or Chronic Anterior Antinuclear Antibody-Positive Uveitis. ClinicalTrials.gov. ID: NCT04088409. Last Update posted 2025-01-24. Available online: https://clinicaltrials.gov/ct2/show/NCT04088409 (accessed on 3 January 2025).
- Watanabe, N.; Gao, S.; Wu, Z.; Batchu, S.; Kajigaya, S.; Diamond, C.; Alemu, L.; Raffo, D.Q.; Hoffmann, P.; Stone, D.; et al. Analysis of deficiency of adenosine deaminase 2 pathogenesis based on single-cell RNA sequencing of monocytes. J. Leukoc. Biol. 2021, 110, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Maccora, I.; Maniscalco, V.; Campani, S.; Carrera, S.; Abbati, G.; Marrani, E.; Mastrolia, M.V.; Simonini, G. A wide spectrum of phenotype of deficiency of deaminase 2 (DADA2): A systematic literature review. Orphanet. J. Rare Dis. 2023, 18, 117. [Google Scholar] [CrossRef]
- Pinto, B.; Deo, P.; Sharma, S.; Syal, A.; Sharma, A. Expanding spectrum of DADA2: A review of phenotypes, genetics, pathogenesis and treatment. Clin. Rheumatol. 2021, 40, 3883–3896. [Google Scholar] [CrossRef]
- Signa, S.; Bertoni, A.; Penco, F.; Caorsi, R.; Cafaro, A.; Cangemi, G.; Volpi, S.; Gattorno, M.; Schena, F. Adenosine Deaminase 2 Deficiency (DADA2): A Crosstalk Between Innate and Adaptive Immunity. Front. Immunol. 2022, 13, 935957. [Google Scholar] [CrossRef] [PubMed]
- Zavialov, A.V.; Yu, X.; Spillmann, D.; Lauvau, G.; Zavialov, A.V. Structural basis for the growth factor activity of human adenosine deaminase ADA2. J. Biol. Chem. 2010, 285, 12367–12377. [Google Scholar] [CrossRef]
- Ombrello, A.K.; Qin, J.; Hoffmann, P.M.; Kumar, P.; Stone, D.; Jones, A.; Romeo, T.; Barham, B.; Pinto-Patarroyo, G.; Toro, C.; et al. Treatment Strategies for Deficiency of Adenosine Deaminase 2. N. Engl. J. Med. 2019, 380, 1582–1584. [Google Scholar] [CrossRef] [PubMed]
- Hashem, H.; Bucciol, G.; Ozen, S.; Unal, S.; Bozkaya, I.O.; Akarsu, N.; Taskinen, M.; Koskenvuo, M.; Saarela, J.; Dimitrova, D.; et al. Hematopoietic Cell Transplantation Cures Adenosine Deaminase 2 Deficiency: Report on 30 Patients. J. Clin. Immunol. 2021, 41, 1633–1647. [Google Scholar] [CrossRef]
- Nihira, H.; Izawa, K.; Ito, M.; Umebayashi, H.; Okano, T.; Kajikawa, S.; Nanishi, E.; Keino, D.; Murakami, K.; Isa-Nishitani, M.; et al. Detailed analysis of Japanese patients with adenosine deaminase 2 deficiency reveals characteristic elevation of type II interferon signature and STAT1 hyperactivation. J. Allergy Clin. Immunol. 2021, 148, 550–562. [Google Scholar] [CrossRef]
- Ayan, G.; Basaran, O.; Firlatan, B.; Kilic, L.; Bilginer, Y.; Alikasifoglu, M.; Karadag, O.; Ozen, S. Long-term follow-up of anti-TNF treatment in adult and pediatric DADA2 patients: Insights from real-world data. Int. J. Rheum. Dis. 2024, 27, e15377. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Fan, X.; Ma, J.; Liu, X.; Li, C. ADA2 deficiency (DADA2) misdiagnosed as systemic onset juvenile idiopathic arthritis in a child carrying a novel compound heterozygous ADA2 mutation: A case report. Transl. Pediatr. 2023, 12, 97–103. [Google Scholar] [CrossRef]
- Sharabati, I.; Ayesh, B.M.; Qafesha, R.M.; Rasras, H.; Abunejma, F.M.; Abdulrazzak, M.; Jobran, A.W. Central retinal artery occlusion in a child with ADA2 deficiency: A case report. Ann. Med. Surg. 2024, 86, 2343–2347. [Google Scholar] [CrossRef]
- Dell’Orso, G.; Grossi, A.; Penco, F.; Caorsi, R.; Palmisani, E.; Terranova, P.; Schena, F.; Lupia, M.; Ricci, E.; Montalto, S.; et al. Case Report: Deficiency of Adenosine Deaminase 2 Presenting with Overlapping Features of Autoimmune Lymphoproliferative Syndrome and Bone Marrow Failure. Front. Immunol. 2021, 12, 754029. [Google Scholar] [CrossRef]
- Garg, N.; Kasapcopur, O.; Foster, J.; Barut, K.; Tekin, A.; Kızılkılıç, O.; Tekin, M. Novel adenosine deaminase 2 mutations in a child with a fatal vasculopathy. Eur. J. Pediatr. 2014, 173, 827–830. [Google Scholar] [CrossRef] [PubMed]
- Dantas, J.G.; Biegelmeyer, E.; Zarur, E.B.; Pinheiro, F.A.G. Rare primary vasculitis: Update on multiple complex diseases and the new kids on the block. Adv. Rheumatol. 2024, 64, 79. [Google Scholar] [CrossRef]
- Greco, A.; Gallo, A.; Fusconi, M.; Magliulo, G.; Turchetta, R.; Marinelli, C.; Macri, G.; De Virgilio, A.; de Vincentiis, M. Cogan’s syndrome: An autoimmune inner ear disease. Autoimmun. Rev. 2013, 12, 396–400. [Google Scholar] [CrossRef]
- Marrero-Gonzalez, A.R.; Ward, C.; Nguyen, S.A.; Jeong, S.S.; Rizk, H.G. Audiovestibular outcomes in adult patients with cogan syndrome: A systematic review. Eur. Arch. Otorhinolaryngol. 2025, 282, 23–35. [Google Scholar] [CrossRef]
- Kahuam-López, N.; Vera-Duarte, G.R.; Pérez-Vázquez, A.K.; Navas, A.; Ramirez-Miranda, A.; Graue-Hernandez, E.O. Cogan syndrome: A case report and review of the literature. Digit. J. Ophthalmol. 2023, 29, 88–93. [Google Scholar] [CrossRef] [PubMed]
Medication | FDA-Approved Conditions | Mechanism of Action | PAN | PAN Level of Evidence | PAN Study | KD | KD Level of Evidence | KD Study | BD | BD Level of Evidence | BD Study | DADA2 | DADA2 Level of Evidence | DADA2 Study | Cogan | Cogan Level of Evidence | Cogan Study |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Infliximab | AS, CD, PsA, RA, UC | Chimeric mouse/human monoclonal antibody that binds soluble and transmembrane TNF-α. Reduces inflammation by inhibiting TNF-α-driven cytokine production (IL-1, IL-6, IL-8) [9]. | ✓ | Level 4 | Retrospective descriptive case series [10,11] | ✓ | Level 1 | Phase 3 RCT KIDCARE (NCT03065244) comparing IFX versus second IVIG infusion: shorter duration of fever, reduced need for additional therapy, less severe anaemia, and shorter hospitalization compared with second IVIG infusion, no difference between treatment groups for markers of inflammation or coronary artery outcome [12] Phase 3 multicenter RCT (NCT01596335): improved 48-h fever resolution and shorter time to defervescence with IFX compared to IVIG retreatment [13] 2024 systematic review: meta-analysis of 14 randomized and non-randomized trials with 1257 participants found IFX alone was more effective than IVIG for refractory KD, showing: higher effectiveness rate (OR 4.48, 95% CI: 2.67-7.52), higher defervescence rate (OR 5.01, 95% CI: 2.99-8.37), a 1.08-day shorter duration of fever (95% CI: 0.61-1.55, p < 0.001), a 1.36-day shorter hospital stay (95% CI: 0.65-2.08), no difference in the incidence of coronary artery, lesions (CALs) & IFX plus IVIG showed: a higher effectiveness rate (OR 2.26, 95% CI: 1.02-5.01), a larger reduction in the right coronary artery Z score (MD = -0.24, 95% CI: -0.27 to -0.21), and no significant improvement in other outcomes [14] | ✓ | Level 1 | Vascular/neurological—Phase 3 RCT (NCT03371095) comparing IFX to CYC: IFX superior to CYC (81% (22/27) complete response versus 56% (14/25) in CYC group), decreased CRP levels, fewer adverse effects, and lower rates of relapse [15] | ✓ | Level 5 | Case reports [16,17,18,19,20] | |||
Level 5 | Case reports [16,21,22,23,24,25,26,27,28,29,30,31,32,33,34] | Level 2 | Phase 1 multicenter, randomized, prospective trial (NCT00271570): fever resolved within 24 hours for 92% (11/12) subjects treated with IFX, compared 67% (8/12) subjects retreated with a second IVIG infusion [35] 2016 non-randomized retrospective study: 66% (21/32) patients responded to re-treatment with IVIG compared to 91% (10/11) of patients who responded to IFX and did not need additional treatment [36] | Level 1 | Intestinal—Phase 3 Open-label, Single-Arm BEGIN study (NCT02505568): patients (n = 33) experienced significant decreases in mean disease activity index, 92.3% (25/27) maintained clinical response at week 32 [37] | ||||||||||||
Ongoing | Phase 2 RCT (NCT05168475) investigating the efficacy of IFX, RTX, and TCZ in treating refractory non-ANCA-associated vasculitis (NAAV), including PAN [38] | Level 5 | Case reports [39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68] | Level 1 | Mucocutaneous—Phase 3, multicentre, prospective, randomised, active-controlled trial: 64% (14/22) achieved remission [69] | ||||||||||||
Level 2 | 2023 systematic review and meta-analysis: pooled proportions found 82% response rate at 3 months, 71% at 6 months, 65% at 12 months, and 50% at 24 months [70,71] | ||||||||||||||||
Level 2 | Uveitis—Phase 2 Prospective Non-Comparative Study of intravitreal IFX injection: patients (n = 22) experienced significant improvement in best corrected visual acuity, decreased mean central foveal thickness OCT, and reduction in mean vitreous haze gradings [72] | ||||||||||||||||
Level 5 | Case reports [73,74,75,76] | ||||||||||||||||
Adalimumab | AS, CD, HS, PsA, RA, UC | High affinity fully human, recombinant IgG anti-TNF-α monoclonal antibody which affects both soluble and membrane-bound forms, functioning to inhibits the interaction of TNF-α to the cell surface TNF receptors, p55 (TNFR1) and p75 (TNFR2), blocking downstream cytokine production such as IL-1 and IL-6 [77]. | ✓ | Level 5 | Case series, reports [21,78,79] | ✓ | Level 1 | Mucocutaneous—Phase 3, multicentre, prospective, randomised, active-controlled trial: 94% (17/18) achieved remission [37] | ✓ | Level 5 | Case reports [80,81,82] | ||||||
Level 2 | 2023 systematic review and meta-analysis: pooled proportions found partial response rates of 45% at 6 months, 60% at 12 months, and 40% at 24 months [70,71] | ||||||||||||||||
Level 5 | Case reports [72,73,74,76] | ||||||||||||||||
Ongoing | Uveitis—observational study (NCT05683626) [83] | ||||||||||||||||
Ongoing | Uveitis—Phase 2 RCT (NCT05874505): evaluating the efficacy and safety of ADA compared to TCZ for uveitis in Behçet’s disease, set to begin recruitment and estimated for completion in July 2027 [84] | ||||||||||||||||
Etanercept | AS, PsA, RA | Soluble TNF receptor fusion protein consisting of two p75 TNF receptors fused to a FC human IgG that acts as a soluble TNF receptor, binding both TNF-alpha and beta and inhibiting downstream inflammatory pathways, such as NFkB and MPK [85] | ✓ | Level 4 | Retrospective descriptive case series [11] | ✓ | Level 1 | Phase 3 RCT (NCT00841789): ETN as adjunct treatment reduced IVIG resistance in patients and mitigated coronary artery dilation without added safety concerns, but long-term follow-up suggested no impact on disease progression. [86,87] | ✓ | Level 1 | Mucocutaneous, articular—Double-blind, placebo-controlled study involving 40 BD patients found that ETN effectively reduced the frequency of oral ulcers, nodular lesions, and papulopustular lesions [88] | ✓ | Level 5 | Case reports [89,90,91,92,93] | |||
Level 5 | Case series, reports [21,94,95,96,97,98] | Level 5 | Case reports [99,100,101] | Level 2 | Intestinal—prospective cohort study of 19 patients found that ETN increased the healing rate of intestinal ulcers and decreased inflammatory markers [102] | ||||||||||||
Level 5 | Case reports [74] | ||||||||||||||||
Golimumab | AS, PsA, RA, UC | Fully human anti-TNF-α monoclonal antibody designed to have better TNF affinity and reduced complement activation by binding to both soluble and transmembrane forms of TNF-α [103] | ✓ | Level 4 | Retrospective descriptive case series [104] | ||||||||||||
Level 5 | Case reports [105,106,107,108,109] | ||||||||||||||||
Rituximab | CLL, GPA, MPA, NHL, RA | Chimeric monoclonal antibody targeting CD20, leading to B-cell depletion, that exerts its effects via complement-mediated cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and by inducing apoptosis [110] | ✓ | Level 3 | Retrospective European collaborative study: RTX was used in 18 cases of relapsing PAN. 33% of patients achieved remission, 11% had a partial response, and 56% experienced treatment failure. None of the patients discontinued RTX due to severe adverse events. [111] | ✓ | Level 5 | Case report [112] | ✓ | ✓ | Level 5 | Case report [113] | |||||
Level 5 | Case reports [21,114,115,116,117,118,119,120,121] | Level 2 | Uveitis—Randomized single-blind control pilot study: patients showed marked improvements in Total Adjusted Disease Activity Index (TADAI) scores after six months compared to those treated with CYC and AZA. RTX also reduced glucocorticoid dependence and stabilized ocular inflammation, highlighting its potential for refractory cases [122] | ||||||||||||||
Ongoing | Phase 2 RCT (NCT05168475) investigating the efficacy of IFX, RTX, and TCZ in treating refractory non-ANCA-associated vasculitis (NAAV), including PAN [38] | Level 5 | Case reports [123] | ||||||||||||||
Tocilizumab | GCA, JIA, RA | Humanized monoclonal antibody that binds to IL-6 receptors, thereby blocking IL-6 effects, interfering with the differentiation of Th2 and Th17 cells, suppressing the generation of Treg cells and production of acute-phase proteins, serving to dampen immune response and B-cell differentiation [110] | ✓ | Level 3 | Retrospective European collaborative study: TCZ was used in 10 cases of relapsing PAN. 50% of patients achieved remission, 0% had a partial response, and 30% experienced treatment failure. 20% of the patients discontinued RTX due to severe adverse events. [111] | ✓ | Level 4 | Retrospective descriptive case series [124] | ✓ | Level 3 | Systematic review of cases: Of 47 BD patients treated with TCZ, improvement in almost all patients with ocular (24/25), neurological (6/6), and vascular (7/7) involvement, as well as secondary amyloidosis (2/2) [76,125] 2022 observational cohort study: improvement and maintenance of symptoms in 9/10 patients, complete remission in 6/10, partial response in 3/10, immunosuppressant dose reduction in 4/10, radiologic improvement of arterial lesions in 4/10 [126] 2023 multicenter study: TCZ was effective in 25/30 patients, of whom 18/30 completely responded and 7/30 partially responded; 67% patients with uveitis (18/30) achieved complete response, 60% with neurological (5/30) manifestations achieved complete response and 42% with mucocutaneous and/or articular (7/30) manifestations completely responde [127] | ✓ | Level 5 | Case reports [128,129,130,131,132,133,134] | |||
Level 5 | Case reports [125] | ||||||||||||||||
Level 5 | Case reports [21,135,136,137,138,139,140,141,142,143,144] | Ongoing | Vascular—Phase 2 multi-center RCT (NCT05845723): evaluates the efficacy and safety of TCZ or TOF with glucocorticoid compared to the traditional combination of glucocorticoids with cyclophosphamide [145] | ||||||||||||||
Ongoing | Phase 2 RCT (NCT05168475) investigating the efficacy of IFX, RTX, and TCZ in treating refractory non-ANCA-associated vasculitis (NAAV), including PAN [38] | Ongoing | Uveitis—Phase 2 RCT (NCT05874505): evaluating the efficacy and safety of ADA compared to TCZ for uveitis in Behçet’s disease, set to begin recruitment and estimated for completion in July 2027 [84] | ||||||||||||||
Ustekinumab | CD, PsA, PsO | Human monoclonal antibody targeting the p40 subunit shared by IL-12 and IL-23, thereby modulating Th1 andTh17 responses respectively [146] | ✓ | Level 3 | Mucocutaneous—Phase 2 study (NCT02648581): 73.3% (11/15) of patients achieving a clinical response within 24 weeks (60% complete response) and 90.9% (10/11) maintaining treatment effects at 52 weeks [147,148] | ||||||||||||
Level 5 | Case reports [149,150] | ||||||||||||||||
Secukinumab | AS, PsA, PsO | Human monoclonal antibody against IL-17A which interferes with the secretion of chemokines (CCL20, CXCL1m CXCL8) that activate the innate immune system, promote epidermal hyperproliferation, T-cell infiltration, and pathogenic gene expression [151] | ✓ | Level 1 | Uveitis—Phase 3 RCT SHIELD study (NCT00995709) [152] | ||||||||||||
Level 2 | Uveitis—Phase 2 RCT (NCT00685399) [153] | ||||||||||||||||
Level 4 | Mucosal, articular—multicenter retrospective study of 15 patients found at 3 months, 66.7% (9/15) patients had a partial or full response. At 6 months, 12 months, and 18 months, and 24 months, 86.7% (13/15), 76.9% (10/13), 90.0% (9/10), and 100.0% (8/8) of patients exhibited response [154] | ||||||||||||||||
Anakinra | CAPS, DIRA, RA, sJIA | Recombinant IL-1 receptor antagonist that competitively inhibits the binding of both IL-1α and IL-1β to their respective receptors, thereby interfering with activvation of the nuclear factor kappa B and mitogen-activated protein kinase pathways, which promote the transcription of pro-inflammatory cytokines such as TNF-α and IL-6 [155] | ✓ | Level 1 | Phase I/IIa Study (NCT02179853): dose-escalation study of anakinra in 22 children with acute KD and coronary artery aneurysms found that up to 6 weeks of treatment was safe, well-tolerated, and effective in reducing coronary artery inflammation, with both IV and SC administration showing promise [156] | ✓ | Level 2 | Phase 2, open-label pilot study (NCT01441076): dose-escalated anakinra (100–300 mg daily) in patients with refractory oral and genital ulcers (n = 6) showed mixed results, with remission in 2 of 6 patients, ulcer reduction in 5 of 6, a safe and moderately effective 200 mg dose, no added benefit at 300 mg, and post-treatment ocular flares in two patients with prior eye disease [157] | |||||||||
Level 2 | Phase II Study (NCT02390596): In 16 IVIG-resistant KD patients, anakinra was well-tolerated, led to rapid fever resolution (75% ITT, 87.5% per-protocol within 48 h), improved CRP levels by day 30, and showed potential in reducing coronary artery dilation, with 50% of patients achieving improved Z scores by day 45 [158] | Level 3 | Retrospective cohort study: 8/9 refractory BD patients showed a prompt improvement after starting anakinra [159] | ||||||||||||||
Level 5 | Case reports [62,100,160,161,162,163,164,165,166,167] | Level 4 | Retrospective descriptive case series [168] | ||||||||||||||
Ongoing | Pilot study (NCT04747847): anakinra and atorvastatin to treat KD [169] Phase III trial (ANACOMP, NCT04656184): compare anakinra with IVIG retreatment [170] NIKITA trial (NCT06697431): aims to establish conclusive evidence for anakinra as an alternative therapy for refractory KD [171] | ||||||||||||||||
Canakinumab | CAPS, FMF, HIDS/MKD, sJIA, TRAPS | Human monoclonal antibody that binds to and neutralizes IL-1β, forming an antigen-antibody complex that can no longer bind the IL-1β receptor preventing pro-inflammatory signal transduction [172] | ✓ | Results not published yet | Phase 2, multi-center trial in Europe (EudraCT 2019-002783-2): enrolled IVIG-resistant and early-diagnosed treatment-naïve patients with completeKD for treatment with canakinumab [173] | ✓ | Level 4 | Retrospective study—46.7 % (7/15) patients (1 pediatric, 6 adults) achieved a partial response, 46.7% (7/15) achieved complete response, and 6.6% (1/15) patient demonstrated no response [154] | ✓ | Level 5 | Case reports [174] | ||||||
Level 5 | Case report [168,175] | ||||||||||||||||
Abciximab | Chimeric Fab fragment derived from a murine monoclonal antibody that inhibits platelet aggregation by binding to Gp IIb–IIIa receptors [176] | ✓ | Level 5 | Case reports [68,177,178,179,180,181,182] | |||||||||||||
Low-dose IL-2 | None | Low-dose IL-2 selectively amplifies regulatory T cells due to their high CD25 expression, while downregulating RORγt, IL-17A, and IL-17F production, and inhibiting follicular helper T cell differentiation via the AKT/mTORC1 pathway, thereby modulating immune responses without promoting CD4+, CD8+, or NK cell proliferation [183,184] | ✓ | Level 2 | Vascular, mucocutaneous—Phase II trial (NCT04065672): reduced lesion counts and improved inflammatory markers [185,186] | ||||||||||||
Level 3 | Open-label, phase 2a basket trial (NCT01988506): included 8 patients with Behçet’s disease. At the 6-month time point, over 50% were classified as treatment responders [187] | ||||||||||||||||
Abatacept | JIA, RA | Fusion protein that combines the extracellular domain of CTLA-4 and the Fc fragment of human IgG1 (CTLA-4–Ig), enabling it to bind to CD80 and CD86, thereby blocking the interaction between CD28 on T cells and CD80/CD86 receptors on APCs, interfering with T cell proliferation and B cell response [188] | ✓ | Level 5 | Case reports [189] | ||||||||||||
Results not yet published | Mucocutaneous—open-label pilot study (NCT01693640) of 30 female patients with resistant Behcet’s ulcers [190] | ||||||||||||||||
Tofacitinib | JIA, PsA, RA, UC | JAK1/3 inhibitor that disrupts IL-2, IL-4, IL-15, and IL-21 signaling and has been found to reduce TNF-α and IL-6 while maintaining IL-10 [191] | ✓ | Level 4 | Retrospective case series [192] | ✓ | Level 3 | Retrospective cohort: 9/13 achieved clinical remission after a mean treatment duration of 10.1 ± 7.0 months, and the other 4/13 had low disease activity [193] 2020 pilot study: 13 patients included with clinical improvement in all cases of vascular involvement (5/5), and unchanged or worsened in 5/7 cases of GI involvement [194] | ✓ | Level 5 | Case reports [195] | ||||||
Level 5 | Case report [196] | Level 5 | Case reports [197,198,199] | ||||||||||||||
Baricitinib | AA, AD, COVID-19, RA | JAK1/2 inhibitor that interferes with IL-6 and IFN signaling [200] | ✓ | Level 5 | Case report [201] | ✓ | Level 4 | Vascular—Single-center, one-arm, self-controlled, open-label pilot study: 13/17 (76.5%) of patients achieving complete response at 3 months, increasing to 88.2% (15/17) at the last visit [202] Intestinal—Pilot study: 76.92% (10/13) patients achieved complete remission of global gastrointestinal symptom scores, and 66.7% (6/9) had mucosal healing on endoscopy [203] | |||||||||
Ongoing | Uveitis—open-label, multicenter Phase 3 trial (NCT04088409) [204] | ||||||||||||||||
Level 5 | Case report [205] | ||||||||||||||||
Filgotinib | RA, UC | JAK1 inhibitor that possesses reduced activity for JAK2 [206] | ✓ | Terminated early | Uveitis—Phase 2 RCT (NCT03207815): significantly reduced the risk of treatment failure in patients with active noninfectious uveitis (37.5%, 12/32) compared to placebo (67.6%, 23/34) by week 24. Unfortunately, the study was terminated early for business reasons [207] | ||||||||||||
Upadacitinib | AD, AS, axSpA, CD, GCA, PsA, RA, UC | JAK1 inhibitor that reduces IL-6 and IFN-γ [208] | ✓ | Level 5 | Case report [209] | ✓ | Level 2 | Prospective, open-label, multi-center pilot trial: 1/8 patient complete remission, 4/8 partial remission [210] Prospective study of uveitis, including one patient with BD and anterior uveitis: complete disease control with treatment consisting of UPA 15 mg daily and AZA 200 mg daily [211] | |||||||||
Level 5 | Case reports [17,212,213] |
Class | Medication | Mechanism | FDA-Approved Indications | MVV Applications | VVV Applications |
---|---|---|---|---|---|
Biologics | |||||
Infliximab | TNF-α inhibitor | AS, CD, PsA, RA, UC | PAN, KD | BD, DADA2 | |
Adalimumab | TNF-α inhibitor | AS, CD, HS, PsA, RA, UC | PAN | BD, DADA2 | |
Etanercept | TNF-α inhibitor | AS, PsA, RA | PAN, KD | BD, DADA2 | |
Golimumab | TNF-α inhibitor | AS, PsA, RA, UC | None | BD | |
Rituximab | Anti-CD20 | CLL, GPA, MPA, NHL, RA | PAN, KD | BD, Cogan | |
Tocilizumab | IL-6 inhibitor | GCA, JIA, RA | PAN, KD | BD, Cogan | |
Ustekinumab | IL-12/23 inhibitor | CD, PsA, PsO | None | BD | |
Secukinumab | IL-17A inhibitor | AS, PsA, PsO | None | BD | |
Anakinra | IL-1 inhibitor | CAPS, DIRA, RA, sJIA | KD | BD | |
Canakinumab | IL-1β inhibitor | CAPS, FMF, HIDS/MKD, sJIA, TRAPS | KD | BD, DADA2 | |
Abciximab | Anti-Gp-IIb–IIIa | KD | None | ||
Low-dose IL-2 | Treg expansion | None | None | BD | |
Abatacept | CTLA-4–Ig that blocks CD28-CD80/CD86 costimulatory pathway | JIA, RA | None | BD | |
JAK inhibitors | Tofacitinib | JAK1/3 inhibitor | JIA, PsA, RA, UC | PAN | BD, Cogan |
Baricitinib | JAK1/2 inhibitor | AA, AD, COVID-19, RA | PAN | BD | |
Filgotinib | JAK1 inhibitor | RA, UC | None | BD | |
Upadacitinib | JAK1 inhibitor | AD, AS, axSpA, CD, GCA, PsA, RA, UC | PAN | BD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, A.; Granovsky, R.; Chau, C.; Cobos, G. Biologic Therapies and Janus Kinase Inhibitors for Medium and Variable Vessel Vasculitides: A Review of Clinical and Preclinical Evidence. Allergies 2025, 5, 29. https://doi.org/10.3390/allergies5030029
Bai A, Granovsky R, Chau C, Cobos G. Biologic Therapies and Janus Kinase Inhibitors for Medium and Variable Vessel Vasculitides: A Review of Clinical and Preclinical Evidence. Allergies. 2025; 5(3):29. https://doi.org/10.3390/allergies5030029
Chicago/Turabian StyleBai, Allison, Rachel Granovsky, Courtney Chau, and Gabriela Cobos. 2025. "Biologic Therapies and Janus Kinase Inhibitors for Medium and Variable Vessel Vasculitides: A Review of Clinical and Preclinical Evidence" Allergies 5, no. 3: 29. https://doi.org/10.3390/allergies5030029
APA StyleBai, A., Granovsky, R., Chau, C., & Cobos, G. (2025). Biologic Therapies and Janus Kinase Inhibitors for Medium and Variable Vessel Vasculitides: A Review of Clinical and Preclinical Evidence. Allergies, 5(3), 29. https://doi.org/10.3390/allergies5030029