The Pattern of Metastatic Breast Cancer: A Prospective Head-to-Head Comparison of [18F]FDG-PET/CT and CE-CT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Image Technique
2.3. Biopsies
2.4. Image Interpretation
2.5. Statistical Analysis
3. Results
3.1. The Distribution of Metastases
3.2. Intermodality Agreement
3.3. Oligometastatic Disease
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardoso, F.; Paluch-Shimon, S.; Senkus, E.; Curigliano, G.; Aapro, M.S.; André, F.; Barrios, C.H.; Bergh, J.; Bhattacharyya, G.S.; Biganzoli, L.; et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5)(†). Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31, 1623–1649. [Google Scholar] [CrossRef] [PubMed]
- Bishop, A.J.; Ensor, J.; Moulder, S.L.; Shaitelman, S.F.; Edson, M.A.; Whitman, G.J.; Bishnoi, S.; Hoffman, K.E.; Stauder, M.C.; Valero, V.; et al. Prognosis for patients with metastatic breast cancer who achieve a no-evidence-of-disease status after systemic or local therapy. Cancer 2015, 121, 4324–4332. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 2015, 65, 5–29. [Google Scholar] [CrossRef] [PubMed]
- Gennari, A.; André, F.; Barrios, C.H.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.A.; et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef] [PubMed]
- Biganzoli, L.; Cardoso, F.; Beishon, M.; Cameron, D.; Cataliotti, L.; Coles, C.E.; Bolton, R.C.D.; Trill, M.D.; Erdem, S.; Fjell, M.; et al. The requirements of a specialist breast centre. Breast 2020, 51, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, M.G.; Gerke, O.; Baun, C.; Falch, K.; Hansen, J.A.; Farahani, Z.A.; Petersen, H.; Larsen, L.B.; Duvnjak, S.; Buskevica, I.; et al. [18F]Fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in suspected recurrent breast cancer: A prospective comparative study of dual-time-point FDG-PET/CT, contrast-enhanced CT, and bone scintigraphy. J. Clin. Oncol. 2016, 34, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Ulaner, G.A. PET/CT for patients with breast cancer: Where is the clinical impact? Am. J. Roentgenol. 2019, 213, 254–265. [Google Scholar] [CrossRef]
- Vogsen, M.; Jensen, J.D.; Christensen, I.Y.; Gerke, O.; Jylling, A.M.B.; Larsen, L.B.; Braad, P.-E.; Søe, K.L.; Bille, C.; Ewertz, M.; et al. FDG-PET/CT in high-risk primary breast cancer-a prospective study of stage migration and clinical impact. Breast Cancer Res. Treat. 2021, 185, 145–153. [Google Scholar] [CrossRef]
- Groheux, D. FDG-PET/CT for systemic staging of patients with newly diagnosed breast cancer. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1417–1419. [Google Scholar] [CrossRef]
- Groheux, D.; Giacchetti, S.; Delord, M.; Hindie, E.; Vercellino, L.; Cuvier, C.; Toubert, M.-E.; Merlet, P.; Hennequin, C.; Espié, M. 18F-FDG PET/CT in staging patients with locally advanced or inflammatory breast cancer: Comparison to conventional staging. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2013, 54, 5–11. [Google Scholar] [CrossRef]
- Groheux, D. Role of fludeoxyglucose in breast cancer: Treatment response. PET Clin. 2018, 13, 395–414. [Google Scholar] [CrossRef] [PubMed]
- Pinker, K.; Riedl, C.; Weber, W.A. Evaluating tumor response with FDG PET: Updates on PERCIST, comparison with EORTC criteria and clues to future developments. Eur. J. Nucl. Med. Mol. Imaging 2017, 44 (Suppl. S1), 55–66. [Google Scholar] [CrossRef] [PubMed]
- NCCN. Clinical Practice Guidelines: Breast Cancer 2021 [Version 4.2021]. Available online: https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf (accessed on 8 June 2021).
- D’Oronzo, S.; Coleman, R.; Brown, J.; Silvestris, F. Metastatic bone disease: Pathogenesis and therapeutic options: Up-date on bone metastasis management. J. Bone Oncol. 2019, 15, 100205. [Google Scholar] [CrossRef] [PubMed]
- Von Moos, R.; Costa, L.; Gonzalez-Suarez, E.; Terpos, E.; Niepel, D.; Body, J.J. Management of bone health in solid tumours: From bisphosphonates to a monoclonal antibody. Cancer Treat. Rev. 2019, 76, 57–67. [Google Scholar] [CrossRef]
- Cha, C.; Ahn, S.G.; Yoo, T.K.; Kim, K.M.; Bae, S.J.; Yoon, C.; Park, S.; Sohn, J.; Jeong, J. Local Treatment in Addition to Endocrine Therapy in Hormone Receptor-Positive and HER2-Negative Oligometastatic Breast Cancer Patients: A Retrospective Multicenter Analysis. Breast Care 2020, 15, 408–414. [Google Scholar] [CrossRef]
- Lievens, Y.; Guckenberger, M.; Gomez, D.; Hoyer, M.; Iyengar, P.; Kindts, I.; Romero, A.M.; Nevens, D.; Palma, D.; Park, C.; et al. Defining oligometastatic disease from a radiation oncology perspective: An ESTRO-ASTRO consensus document. Radiother. Oncol. 2020, 148, 157–166. [Google Scholar] [CrossRef]
- Pasquier, D.; Bidaut, L.; Oprea-Lager, D.E.; de Souza, N.M.; Krug, D.; Collette, L.; Kunz, W.; Belkacemi, Y.; Bau, M.G.; Caramella, C.; et al. Designing clinical trials based on modern imaging and metastasis-directed treatments in patients with oligometastatic breast cancer: A consensus recommendation from the EORTC Imaging and Breast Cancer Groups. Lancet Oncol. 2023, 24, e331–e343. [Google Scholar] [CrossRef]
- Kottner, J.; Audigé, L.; Brorson, S.; Donner, A.; Gajewski, B.J.; Hróbjartsson, A.; Roberts, C.; Shoukri, M.; Streiner, D.L. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J. Clin. Epidemiol. 2011, 64, 96–106. [Google Scholar] [CrossRef]
- Vogsen, M.; Jensen, J.D.; Gerke, O.; Jylling, A.M.B.; Asmussen, J.T.; Christensen, I.Y.; Braad, P.-E.; Thye-Rønn, P.; Søe, K.L.; Ewertz, M.; et al. Benefits and harms of implementing [(18)F]FDG-PET/CT for diagnosing recurrent breast cancer: A prospective clinical study. EJNMMI Res. 2021, 11, 93. [Google Scholar] [CrossRef]
- Vogsen, M.; Harbo, F.; Jakobsen, N.M.; Nissen, H.J.; Dahlsgaard-Wallenius, S.E.; Gerke, O.; Jensen, J.D.; Asmussen, J.T.; Jylling, A.M.B.; Braad, P.-E.; et al. Response Monitoring in Metastatic Breast Cancer: A Prospective Study Comparing (18)F-FDG PET/CT with Conventional CT. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2023, 64, 355–361. [Google Scholar] [CrossRef]
- Vogsen, M.; Naghavi-Behzad, M.; Harbo, F.G.; Jakobsen, N.M.; Gerke, O.; Asmussen, J.T.; Nissen, H.J.; Dahlsgaard-Wallenius, S.E.; Braad, P.-E.; Jensen, J.D.; et al. 2-[(18)F]FDG-PET/CT is a better predictor of survival than conventional CT: A prospective study of response monitoring in metastatic breast cancer. Sci. Rep. 2023, 13, 5552. [Google Scholar] [CrossRef] [PubMed]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Naghavi-Behzad, M.; Vogsen, M.; Gerke, O.; Dahlsgaard-Wallenius, S.E.; Nissen, H.J.; Jakobsen, N.M.; Braad, P.-E.; Vilstrup, M.H.; Deak, P.; Hildebrandt, M.G.; et al. Comparison of Image Quality and Quantification Parameters between Q.Clear and OSEM Reconstruction Methods on FDG-PET/CT Images in Patients with Metastatic Breast Cancer. J. Imaging 2023, 9, 65. [Google Scholar] [CrossRef]
- Te Riet, J.; Rijnsdorp, S.; Roef, M.J.; Arends, A.J. Evaluation of a Bayesian penalized likelihood reconstruction algorithm for low-count clinical (18)F-FDG PET/CT. EJNMMI Phys. 2019, 6, 32. [Google Scholar] [CrossRef]
- Koolen, B.B.; Vrancken Peeters, M.J.; Aukema, T.S.; Vogel, W.V.; Oldenburg, H.S.; van der Hage, J.A.; Hoefnagel, C.A.; Stokkel, M.P.M.; Loo, C.E.; Rodenhuis, S.; et al. 18F-FDG PET/CT as a staging procedure in primary stage II and III breast cancer: Comparison with conventional imaging techniques. Breast Cancer Res Treat. 2012, 131, 117–126. [Google Scholar] [CrossRef]
- Hansen, J.A.; Naghavi-Behzad, M.; Gerke, O.; Baun, C.; Falch, K.; Duvnjak, S.; Alavi, A.; Høilund-Carlsen, P.F.; Hildebrandt, M.G. Diagnosis of bone metastases in breast cancer: Lesion-based sensitivity of dual-time-point FDG-PET/CT compared to low-dose CT and bone scintigraphy. PLoS ONE 2021, 16, e0260066. [Google Scholar] [CrossRef]
- Groheux, D.; Giacchetti, S.; Moretti, J.L.; Porcher, R.; Espie, M.; Lehmann-Che, J.; de Roquancourt, A.; Hamy, A.-S.; Cuvier, C.; Vercellino, L.; et al. Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 426–435. [Google Scholar] [CrossRef]
- Kitajima, K.; Fukushima, K.; Miyoshi, Y.; Nishimukai, A.; Hirota, S.; Igarashi, Y.; Katsuura, T.; Maruyama, K.; Hirota, S. Association between (1)(8)F-FDG uptake and molecular subtype of breast cancer. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1371–1377. [Google Scholar] [CrossRef]
- Ulaner, G.A. 16α-18F-fluoro-17β-Fluoroestradiol (FES): Clinical Applications for Patients With Breast Cancer. Semin. Nucl. Med. 2022, 52, 574–583. [Google Scholar] [CrossRef]
- Ulaner, G.A.; Jhaveri, K.; Chandarlapaty, S.; Hatzoglou, V.; Riedl, C.C.; Lewis, J.S.; Mauguen, A. Head-to-Head Evaluation of (18)F-FES and (18)F-FDG PET/CT in Metastatic Invasive Lobular Breast Cancer. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2021, 62, 326–331. [Google Scholar] [CrossRef]
- Treglia, G.; Muoio, B.; Roustaei, H.; Kiamanesh, Z.; Aryana, K.; Sadeghi, R. Head-to-Head Comparison of Fibroblast Activation Protein Inhibitors (FAPI) Radiotracers versus [(18)F]F-FDG in Oncology: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 11192. [Google Scholar] [CrossRef]
- Eshet, Y.; Tau, N.; Apter, S.; Nissan, N.; Levanon, K.; Bernstein-Molho, R.; Globus, O.; Itay, A.; Shapira, T.; Oedegaard, C.; et al. The Role of 68 Ga-FAPI PET/CT in Detection of Metastatic Lobular Breast Cancer. Clin. Nucl. Med. 2023, 48, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Chua, S.C.; Groves, A.M.; Kayani, I.; Menezes, L.; Gacinovic, S.; Du, Y.; Bomanji, J.B.; Ell, P.J. The impact of 18F-FDG PET/CT in patients with liver metastases. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 1906–1914. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, W.E.; De Ruysscher, D.; Weder, W.; Le Pechoux, C.; De Leyn, P.; Hoffmann, H.; Westeel, V.; Stahel, R.; Felip, E.; Peters, S.; et al. 2nd ESMO Consensus Conference in Lung Cancer: Locally advanced stage III non-small-cell lung cancer. Ann. Oncol. 2015, 26, 1573–1588. [Google Scholar] [CrossRef]
- Hellman, S.; Weichselbaum, R.R. Oligometastases. J. Clin. Oncol. 1995, 13, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Milano, M.T.; Katz, A.W.; Zhang, H.; Huggins, C.F.; Aujla, K.S.; Okunieff, P. Oligometastatic breast cancer treated with hypofractionated stereotactic radiotherapy: Some patients survive longer than a decade. Radiother. Oncol. 2019, 131, 45–51. [Google Scholar] [CrossRef]
- Onal, C.; Guler, O.C.; Yildirim, B.A. Treatment outcomes of breast cancer liver metastasis treated with stereotactic body radiotherapy. Breast 2018, 42, 150–156. [Google Scholar] [CrossRef]
- Weykamp, F.; König, L.; Seidensaal, K.; Forster, T.; Hoegen, P.; Akbaba, S.; Mende, S.; Welte, S.E.; Deutsch, T.M.; Schneeweiss, A.; et al. Extracranial Stereotactic Body Radiotherapy in Oligometastatic or Oligoprogressive Breast Cancer. Front. Oncol. 2020, 10, 987. [Google Scholar] [CrossRef]
- Chmura, S.J.; Winter, K.A.; Woodward, W.A.; Borges, V.F.; Salama, J.K.; Al-Hallaq, H.A.; Matuszak, M.; Milano, M.T.; Jaskowiak, N.T.; Bandos, H.; et al. NRG-BR002: A phase IIR/III trial of standard of care systemic therapy with or without stereotactic body radiotherapy (SBRT) and/or surgical resection (SR) for newly oligometastatic breast cancer (NCT02364557). J. Clin. Oncol. 2022, 40 (Suppl. 16), 1007. [Google Scholar] [CrossRef]
- Rundo, L.; Stefano, A.; Militello, C.; Russo, G.; Sabini, M.G.; D’Arrigo, C.; Marletta, F.; Ippolito, M.; Mauri, G.; Vitabile, S.; et al. A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning. Comput. Methods Programs Biomed. 2017, 144, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.; He, Y.; Allen, B.G.; Buatti, J.M.; Smith, B.J.; Tong, L.; Sun, Z.; Wu, J.; Diehn, M.; Loo, B.W.; et al. Deep segmentation networks predict survival of non-small cell lung cancer. Sci. Rep. 2019, 9, 17286. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Beadle, B.M.; Garden, A.S.; Schwartz, D.L.; Aristophanous, M. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy. Med. Phys. 2015, 42, 5310–5320. [Google Scholar] [CrossRef]
- Heydarheydari, S.; Birgani, M.J.T.; Rezaeijo, S.M. Auto-segmentation of head and neck tumors in positron emission tomography images using non-local means and morphological frameworks. Pol. J. Radiol. 2023, 88, e365–e370. [Google Scholar] [CrossRef]
- Dayes, I.S.; Metser, U.; Hodgson, N.; Parpia, S.; Eisen, A.F.; George, R.; Blanchette, P.; Cil, T.D.; Arnaout, A.; Chan, A.; et al. Impact of (18)F-Labeled Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography Versus Conventional Staging in Patients With Locally Advanced Breast Cancer. J. Clin. Oncol. 2023, 41, 3909–3916. [Google Scholar] [CrossRef]
- Ishimori, T.; Patel, P.V.; Wahl, R.L. Detection of unexpected additional primary malignancies with PET/CT. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2005, 46, 752–757. [Google Scholar]
- Li, Z.; Kitajima, K.; Hirata, K.; Togo, R.; Takenaka, J.; Miyoshi, Y.; Kudo, K.; Ogawa, T.; Haseyama, M. Preliminary study of AI-assisted diagnosis using FDG-PET/CT for axillary lymph node metastasis in patients with breast cancer. EJNMMI Res. 2021, 11, 10. [Google Scholar] [CrossRef]
- Windsor, G.O.; Bai, H.; Lourenco, A.P.; Jiao, Z. Application of artificial intelligence in predicting lymph node metastasis in breast cancer. Front Radiol. 2023, 3, 928639. [Google Scholar] [CrossRef]
- Moreau, N.; Rousseau, C.; Fourcade, C.; Santini, G.; Brennan, A.; Ferrer, L.; Lacombe, M.; Guillerminet, C.; Colombié, M.; Jézéquel, P.; et al. Automatic Segmentation of Metastatic Breast Cancer Lesions on (18)F-FDG PET/CT Longitudinal Acquisitions for Treatment Response Assessment. Cancers 2021, 14, 101. [Google Scholar] [CrossRef]
Characteristics | Number |
---|---|
Age (year) | |
Median (range) | 71.2 (38.1–91.1) |
Site of biopsy, N (%) | |
Bone | 23 (30.3) |
Liver | 10 (13.2) |
Lung | 2 (2.63) |
Brain | 1 (1.32) |
Skin | 2 (2.63) |
Lymph node | 14 (18.4) |
Pleural fluid | 3 (3.95) |
Other | 21 (27.7) |
ER 1-status from biopsy, N (%) | |
Positive 1–100% | 49 (64.5) |
Negative | 7 (9.21) |
Unknown | 20 (26.3) |
HER2 2-status from biopsy, N (%) | |
Positive | 9 (11.8) |
Negative | 58 (76.32) |
Unknown | 9 (11.8) |
Adjuvant treatment 3, N (%) | |
Neoadjuvant +/− adjuvant | 4 (7.69) |
Adjuvant | 37 (71.2) |
No medical treatment | 11 (21.2) |
CE-CT | |||||
---|---|---|---|---|---|
[18F]FDG-PET/CT | Number of Lesions | ||||
0 | 1 | 2–4 | ≥5 | Total | |
All lesions1 | |||||
0 | 1 2 | 4 | 0 | 1 | 6 |
1 | 1 | 2 | 1 | 4 | 8 |
2–4 | 2 | 0 | 5 | 4 | 11 |
≥5 | 2 | 1 | 2 | 46 | 51 |
Total | 6 | 7 | 8 | 55 | 76 |
Agreement (95% CI) | Expected agreement | Kappa, κ (95% CI) | Std. Err. | Z | Prob > Z |
71.1% (59.5–80.9) | 51.7% | 0.40 (0.29–0.59) | 0.075 | 5.35 | 0.00 |
Bone lesions | |||||
0 | 22 | 0 | 1 | 0 | 23 |
1 | 6 | 2 | 0 | 1 | 9 |
2–4 | 3 | 1 | 6 | 1 | 11 |
≥5 | 1 | 2 | 2 | 28 | 33 |
Total | 32 | 5 | 9 | 30 | 76 |
Agreement (95% CI) | Expected agreement | Kappa, κ (95% CI) | Std. Err. | Z | Prob > Z |
76.3% (65.2–85.3) | 32.4% | 0.65 (0.51–0.79) | 0.074 | 8.83 | 0.00 |
Lung lesions | |||||
0 | 30 | 11 | 2 | 2 | 45 |
1 | 1 | 3 | 5 | 1 | 10 |
2–4 | 2 | 1 | 2 | 7 | 12 |
≥5 | 0 | 0 | 0 | 9 | 9 |
Total | 33 | 15 | 9 | 19 | 76 |
Agreement (95% CI) | Expected agreement | Kappa, κ (95% CI) | Std. Err. | Z | Prob > Z |
57.9% (46.0–69.1) | 33.1% | 0.37 (0.24–0.50) | 0.067 | 5.52 | 0.00 |
Liver lesions | |||||
0 | 52 | 3 | 4 | 1 | 60 |
1 | 0 | 2 | 2 | 0 | 4 |
2–4 | 1 | 0 | 2 | 0 | 3 |
≥5 | 0 | 1 | 1 | 7 | 9 |
Total | 53 | 6 | 9 | 8 | 76 |
Agreement (95% CI) | Expected agreement | Kappa, κ (95% CI) | Std. Err. | Z | Prob > Z |
82.9% (72.5–90.6) | 57.2% | 0.60 (0.46–0.75) | 0.074 | 8.12 | 0.00 |
CE-CT | ||||||
---|---|---|---|---|---|---|
FDG-PET/CT | Likert Scale | |||||
0 | 1 | 2 | 3 | 4 | Total | |
Lymph nodes | ||||||
0 | 29 | 0 | 1 | 1 | 0 | 31 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 2 | 0 | 3 |
3 | 5 | 0 | 2 | 1 | 0 | 8 |
4 | 13 | 0 | 2 | 4 | 15 | 34 |
Total | 48 | 0 | 5 | 8 | 15 | 76 |
Agreement (95% CI) | Expected agreement | Kappa, κ (95% CI) | Std. Err. | Z | Prob > Z | |
59.2% (47.3–70.4) | 36.0% | 0.36 (0.22–0.50) | 0.072 | 5.04 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gram-Nielsen, R.; Christensen, I.Y.; Naghavi-Behzad, M.; Dahlsgaard-Wallenius, S.E.; Jakobsen, N.M.; Gerke, O.; Jensen, J.D.; Ewertz, M.; Hildebrandt, M.G.; Vogsen, M. The Pattern of Metastatic Breast Cancer: A Prospective Head-to-Head Comparison of [18F]FDG-PET/CT and CE-CT. J. Imaging 2023, 9, 222. https://doi.org/10.3390/jimaging9100222
Gram-Nielsen R, Christensen IY, Naghavi-Behzad M, Dahlsgaard-Wallenius SE, Jakobsen NM, Gerke O, Jensen JD, Ewertz M, Hildebrandt MG, Vogsen M. The Pattern of Metastatic Breast Cancer: A Prospective Head-to-Head Comparison of [18F]FDG-PET/CT and CE-CT. Journal of Imaging. 2023; 9(10):222. https://doi.org/10.3390/jimaging9100222
Chicago/Turabian StyleGram-Nielsen, Rosa, Ivar Yannick Christensen, Mohammad Naghavi-Behzad, Sara Elisabeth Dahlsgaard-Wallenius, Nick Møldrup Jakobsen, Oke Gerke, Jeanette Dupont Jensen, Marianne Ewertz, Malene Grubbe Hildebrandt, and Marianne Vogsen. 2023. "The Pattern of Metastatic Breast Cancer: A Prospective Head-to-Head Comparison of [18F]FDG-PET/CT and CE-CT" Journal of Imaging 9, no. 10: 222. https://doi.org/10.3390/jimaging9100222
APA StyleGram-Nielsen, R., Christensen, I. Y., Naghavi-Behzad, M., Dahlsgaard-Wallenius, S. E., Jakobsen, N. M., Gerke, O., Jensen, J. D., Ewertz, M., Hildebrandt, M. G., & Vogsen, M. (2023). The Pattern of Metastatic Breast Cancer: A Prospective Head-to-Head Comparison of [18F]FDG-PET/CT and CE-CT. Journal of Imaging, 9(10), 222. https://doi.org/10.3390/jimaging9100222