Development of an Advanced Life Cycle Impact Assessment Method to Evaluate Radioactivity in Construction Materials
Abstract
1. Introduction
- Advancing the functionality and applicability of the methodology based on standardised and consolidated approaches including updated dose conversion coefficients (DCCs).
- Implementing this advanced methodology into our novel custom-developed Python (v.3.11) package, named NORMIA, requiring user-defined inputs, to easily connect the characterisation factors with Brightway 2.5, a Python library for LCA calculations [20].
2. Results and Discussion
2.1. Comparative Analysis of the Characterisation Factors
2.2. Implementation of the Advanced Methodology in NORMIA Tool
3. Materials and Methods
3.1. Human Health Impact Category
3.1.1. Non-Occupational Human Health Exposure
Manufacturing-Stage Exposure: Intake Via Inhalation and Ingestion from Industrial Direct Emissions
Manufacturing-Stage Exposure: External Exposure from Industrial Direct Emissions
Use-Stage Exposure: External Gamma Rays
Use-Stage Exposure: Inhalation of Radon and Its Progeny
3.1.2. Occupational Human Health Exposure
Manufacturing-Stage Exposure: External Exposure to Gamma Rays from Stored NORM Waste Stockpile
Manufacturing-Stage Exposure: Intake via Inhalation of the Fugitive NORM Emissions
3.2. Non-Human Biota (Ecosystem) Impact Category
4. Conclusions
- Advancing the functionality and applicability of the previous LCA-NORM framework methodology based on standardised approaches and practical enhancements.
- Implementing this advanced methodology into our novel custom-developed Python (v.3.11) package NORMIA, which can easily be incorporated into the Brightway v.2.5 Python library for LCA calculations, for reproducibility and flexibility.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cinelli, G.; De Cort, M.; Tollefsen, T. (Eds.) European Atlas of Natural Radiation; Publication Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-08258-3. [Google Scholar]
- Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards; IAEA Safety Standards Series; International Atomic Energy Agency: Vienna, Austria, 2014; ISBN 978-92-0-135310-8.
- International Atomic Energy Agency. IAEA Nuclear Safety and Security Glossary: Terminology Used in Nuclear Safety, Nuclear Security, Radiation Protection and Emergency Preparedness and Response, 1st ed.; Non-Serial Publication; International Atomic Energy Agency: Vienna, Austria, 2022; ISBN 978-92-0-141822-7. [Google Scholar]
- Nuccetelli, C.; Risica, S.; Onisei, S.; Leonardi, F.; Trevisi, R. Natural Radioactivity in Building Materials in the European Union: A Database of Activity Concentrations, Radon Emanations and Radon Exhalation Rates; Istituto Superiore di Sanità: Rome, Italy, 2017; p. 70. [Google Scholar]
- ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 2007, 37, 1–332. [Google Scholar]
- World Health Organization. WHO Handbook on Indoor Radon: A Public Health Perspective; Zeeb, H., Shannoun, F., Eds.; World Health Organization: Geneva, Switzerland, 2009; ISBN 978 92 4 154767 3. [Google Scholar]
- ICRP. ICRP Publication 115. Lung cancer risk from radon and progeny and statement on radon. Ann. ICRP 2010, 40, 1–64. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2; The National Academies Press: Washington, DC, USA, 2006; ISBN 0-309-53040-7. [Google Scholar]
- U.S. Environmental Protection Agency (EPA). Radiation Health Effects. Available online: https://www.epa.gov/radiation/radiation-health-effects#:~:text=It%20can%20also%20result%20in,to%20our%20overall%20cancer%20risk. (accessed on 10 January 2025).
- IEA. Technology Roadmap—Low-Carbon Transition in the Cement Industry; IEA: Paris, France, 2018; p. 66. [Google Scholar]
- Habert, G.; Miller, S.A.; John, V.M.; Provis, J.L.; Favier, A.; Horvath, A.; Scrivener, K.L. Environmental Impacts and Decarbonization Strategies in the Cement and Concrete Industries. Nat. Rev. Earth Environ. 2020, 1, 559–573. [Google Scholar] [CrossRef]
- Council Directive 2013/59/Euratom of 5 December 2013 Laying down Basic Safety Standards for Protection against the Dangers Arising from Exposure to Ionising Radiation, and Repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom; Official Journal of the European Union: Brussels, Belgum, 2014.
- Michalik, B.; Dvorzhak, A.; Pereira, R.; Lourenço, J.; Haanes, H.; Di Carlo, C.; Nuccetelli, C.; Venoso, G.; Leonardi, F.; Trevisi, R.; et al. A Methodology for the Systematic Identification of Naturally Occurring Radioactive Materials (NORM). Sci. Total Environ. 2023, 881, 163324. [Google Scholar] [CrossRef] [PubMed]
- Popic, J.M.; Urso, L.; Michalik, B. Assessing the Exposure Situations with Naturally Occurring Radioactive Materials across European Countries by Means of the E-NORM Survey. Sci. Total Environ. 2023, 905, 167065. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation. UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Volume I: Sources; UN: New York, NY, USA, 2000. [Google Scholar]
- World Aluminium. Technology Roadmap—Maximising the Use of Bauxite Residue in Cement; The International Aluminium Institute: London, UK, 2020. [Google Scholar]
- Joyce, P.J.; Goronovski, A.; Tkaczyk, A.H.; Björklund, A. A Framework for Including Enhanced Exposure to Naturally Occurring Radioactive Materials (NORM) in LCA. Int. J. Life Cycle Assess. 2017, 22, 1078–1095. [Google Scholar] [CrossRef]
- Goronovski, A.; Joyce, P.J.; Björklund, A.; Finnveden, G.; Tkaczyk, A.H. Impact Assessment of Enhanced Exposure from Naturally Occurring Radioactive Materials (NORM) within LCA. J. Clean. Prod. 2018, 172, 2824–2839. [Google Scholar] [CrossRef]
- Joyce, P.J.; Hertel, T.; Goronovski, A.; Tkaczyk, A.H.; Pontikes, Y.; Björklund, A. Identifying Hotspots of Environmental Impact in the Development of Novel Inorganic Polymer Paving Blocks from Bauxite Residue. Resour. Conserv. Recycl. 2018, 138, 87–98. [Google Scholar] [CrossRef]
- Mutel, C. Brightway: An Open Source Framework for Life Cycle Assessment. J. Open Source Softw. 2017, 2, 236. [Google Scholar] [CrossRef]
- ICRP. ICRP Publication 119: Compendium of Dose Coefficients Based on ICRP Publication 60. Ann. ICRP 2012, 41 (Suppl. S1), 1–130. [Google Scholar] [CrossRef]
- ICRP. ICRP Publication 137: Occupational Intakes of Radionuclides: Part 3. Ann. ICRP 2017, 46, 1–486. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Decision of 26 March 2013 Establishing the Best Available Techniques (BAT) Conclusions Under Directive 2010/75/EU of the European Parliament and of the Council on Industrial Emissions for the Production of Cement, Lime and Magnesium Oxide (Notified Under Document C(2013) 1728) (Text with EEA Relevance) (2013/163/EU); European Commission: Luxembourg, 2013. [Google Scholar]
- European Committee for Standardization Construction Products: Assessment of Release of Dangerous Substances-Dose Assessment of Emitted Gamma Radiation EN 17637; Brussels, 2022. Available online: https://standards.iteh.ai/catalog/standards/cen/8bc28258-f6b1-4c66-ac6d-4ccb0f67dcec/en-17637-2022?srsltid=AfmBOopVXJEYerkzG2VdHJwJ03rIU9BI-CirMcuejAGXiR0fpXzQrcf5 (accessed on 29 June 2025).
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.J.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M.; et al. USEtox—The UNEP-SETAC Toxicity Model: Recommended Characterisation Factors for Human Toxicity and Freshwater Ecotoxicity in Life Cycle Impact Assessment. Int. J. Life Cycle Assess. 2008, 13, 532–546. [Google Scholar] [CrossRef]
- Fantke, P.; Bijster, M.; Guignard, C.; Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; Kounina, A.; Magaud, V.; Margni, M.; McKone, T.E.; et al. USEtox® 2.0 Documentation (Version 1); USEtox® Team: Denmark, 2017. [Google Scholar]
- Bellamy, M.B.; Dewji, S.A.; Leggett, R.W.; Hiller, M.; Veinot, K.; Manger, R.P.; Eckerman, K.F.; Ryman, J.C.; Easterly, C.E.; Hertel, N.E.; et al. External Exposure to Radionuclides in Air, Water and Soil; U.S. Environmental Protection Agency: Washington, DC, USA, 2019. [Google Scholar]
- Meijer, A.; Huijbregts, M.; Reijnders, L. Human Health Damages Due to Indoor Sources of Organic Compounds and Radioactivity in Life Cycle Impact Assessment of Dwellings—Part 1: Characterisation Factors (8 pp). Int. J. Life Cycle Assess. 2005, 10, 309–316. [Google Scholar] [CrossRef]
- International Atomic Energy Agency (IAEA). Regulatory Control of Exposure Due to Radionuclides in Building Materials and Construction Materials; International Atomic Energy Agency: Vienna, Austria, 2023. [Google Scholar]
- Koblinger, L. Mathematical Models of External Gamma Radiation and Congruence of Measurements. Radiat. Prot. Dosimetry 1984, 7, 227–234. [Google Scholar] [CrossRef]
- Markkanen, M. Radiation Dose Assessments for Materials with Elevated Natural Radioactivity; Finnish Centre for Radiation and Nuclear Safety: Helsinki, Finland, 1995; 25 p. + app. 13 p. [Google Scholar]
- ICRP. ICRP Publication 126: Radiological Protection against Radon Exposure. Ann ICRP. 2014, 43, 5–73. [Google Scholar] [CrossRef]
- Di Carlo, C.; Maiorana, A.; Ampollini, M.; Antignani, S.; Caprio, M.; Carpentieri, C.; Bochicchio, F. Models of Radon Exhalation from Building Structures: General and Case-Specific Solutions. Sci. Total Environ. 2023, 885, 163800. [Google Scholar] [CrossRef] [PubMed]
- Ishimori, Y.; Lange, K.; Martin, P.; Mayya, Y.S.; Phaneuf, M. Measurement and Calculation of Radon Releases from NORM Residues; International Atomic Energy Agency: Vienna, Austria, 2013. [Google Scholar]
- Nuccetelli, C.; Leonardi, F.; Trevisi, R. Building Material Radon Emanation and Exhalation Rate: Need of a Shared Measurement Protocol from the European Database Analysis. J. Environ. Radioact. 2020, 225, 106438. [Google Scholar] [CrossRef]
- Frutos-Puerto, S.; Pinilla-Gil, E.; Andrade, E.; Reis, M.; Madruga, M.J.; Miró Rodríguez, C. Radon and Thoron Exhalation Rate, Emanation Factor and Radioactivity Risks of Building Materials of the Iberian Peninsula. PeerJ 2020, 8, e10331. [Google Scholar] [CrossRef]
- ICRP. Summary of ICRP Recommendations on Radon; 2018. Available online: https://icrpaedia.org/General_Information_on_Radon (accessed on 29 June 2025).
- Harrison, J.D.; Marsh, J.W. ICRP Recommendations on Radon. In Proceedings of the Fifth International Symposium on the System of Radiological Protection, Adelaide, Australia, 17–21 November 2019; SAGE Publications Ltd.: Adelaide, Australia, 2020; Volume 49, pp. 68–76. [Google Scholar]
- International Atomic Energy Agency. Occupational Radiation Protection in the Uranium Mining and Processing Industry; Safety Report Series; International Atomic Energy Agency: Vienna, Austria, 2020. [Google Scholar]
- ICRP. ICRP Publication 130: Occupational Intakes of Radionuclides: Part 1. Ann. ICRP 2015, 44, 5–188. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR 2020/2021 Report Volume IV: Sources, Effects and Risks of Ionizing Radiation—Scientific Annex D: Evaluation of Occupational Exposure to Ionizing Radiation; United Nations: New York, NY, USA, 2022. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR 2008 Report Volume I: Sources and Effects of Ionizing Radiation—Annex B: Exposures of the Public and Workers from Various Sources of Radiation; United Nations: New York, NY, USA, 2010. [Google Scholar]
- Brown, J.S.; Gordon, T.; Price, O.; Asgharian, B. Thoracic and Respirable Particle Definitions for Human Health Risk Assessment. Part. Fibre Toxicol. 2013, 10, 12. [Google Scholar] [CrossRef]
- Dong, S.; Koutrakis, P.; Li, L.; Coull, B.A.; Schwartz, J.; Kosheleva, A.; Zanobetti, A. Synergistic Effects of Particle Radioactivity (Gross β Activity) and Particulate Matter ≤ 2.5 μm Aerodynamic Diameter on Cardiovascular Disease Mortality. J. Am. Heart Assoc. 2022, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Luderer, U.; Lim, J.; Ortiz, L.; Nguyen, J.D.; Shin, J.H.; Allen, B.D.; Liao, L.S.; Malott, K.; Perraud, V.; Wingen, L.M.; et al. Exposure to Environmentally Relevant Concentrations of Ambient Fine Particulate Matter (PM2.5) Depletes the Ovarian Follicle Reserve and Causes Sex-Dependent Cardiovascular Changes in Apolipoprotein E Null Mice. Part. Fibre Toxicol. 2022, 19, 5. [Google Scholar] [CrossRef] [PubMed]
- Peralta, A.A.; Link, M.S.; Schwartz, J.; Luttmann-Gibson, H.; Dockery, D.W.; Blomberg, A.; Wei, Y.; Mittleman, M.A.; Gold, D.R.; Laden, F.; et al. Exposure to Air Pollution and Particle Radioactivity with the Risk of Ventricular Arrhythmias. Circulation 2020, 142, 858–867. [Google Scholar] [CrossRef]
- Kurniati, A.; Rizky, Z.P.; Ramdhan, D.H. Particulate Matter 2.5 Concentration and Subjective Acute Respiratory Effects among Production Workers at a Cement Factory. In Proceedings of the 1st International Conference on Global Health, Stanford, CA, USA, 9–11 November 2017; KnE Life Sciences: Dubai, United Arab Emirates, 2017; pp. 139–148. [Google Scholar]
- Yang, Y.; Ruan, Z.; Wang, X.; Yang, Y.; Mason, T.G.; Lin, H.; Tian, L. Short-Term and Long-Term Exposures to Fine Particulate Matter Constituents and Health: A Systematic Review and Meta-Analysis. Environ. Pollut. 2019, 247, 874–882. [Google Scholar] [CrossRef]
- Brown, J.E.; Alfonso, B.; Avila, R.; Beresford, N.A.; Copplestone, D.; Pröhl, G.; Ulanovsky, A. The ERICA Tool. J. Environ. Radioact. 2008, 99, 1371–1383. [Google Scholar] [CrossRef]
- Norwegian Radiation and Nuclear Safety Authority ERICA Tool Home Page. Available online: https://erica-tool.com/ (accessed on 3 January 2025).
- Fohlmeister, J.; Hoffmann, B. Redistribution of Radionuclides in Wall Material and Its Effects on the Room Dose Rate. J. Radiol. Prot. 2023, 43, 031510. [Google Scholar] [CrossRef] [PubMed]
Impact Category | Sub-Category | Characterisation Factor Units |
---|---|---|
Non-occupational | Intake and external exposure from the environmental emissions | mSv y−1 kBq−1radionuclide *,emitted to environment |
External gamma exposure at the use stage | mSv y−1 kBq−1Radium-226,embedded in construction material mSv y−1 kBq−1Thorium-232,embedded in construction material mSv y−1 kBq−1Potassium-40,embedded in construction material | |
Radon inhalation at the use stage | mSv y−1 kBq−1Radium-226,embedded in construction material | |
Occupational | External gamma exposure from material stockpile handling | mSv y−1 kBq−1Radium-226,embedded in waste/by-product mSv y−1 kBq−1Thorium-232,embedded in waste/by-product mSv y−1 kBq−1Potassium-40,embedded in waste/by-product |
Inhalation of particulate matters (PM10) | mSv y−1 kBq−1Radium-226, inhaled mSv y−1 kBq−1Thorium-232, inhaled mSv y−1 kBq−1Potassium-40, inhaled | |
Ecosystem | Intake and external exposure from the environmental emissions | ΔPAF m3habitat d kBq−1radionuclide *,emitted to environment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özcan Kilcan, C.; Reigo, U.A.; Tkaczyk, A.H. Development of an Advanced Life Cycle Impact Assessment Method to Evaluate Radioactivity in Construction Materials. Recycling 2025, 10, 195. https://doi.org/10.3390/recycling10050195
Özcan Kilcan C, Reigo UA, Tkaczyk AH. Development of an Advanced Life Cycle Impact Assessment Method to Evaluate Radioactivity in Construction Materials. Recycling. 2025; 10(5):195. https://doi.org/10.3390/recycling10050195
Chicago/Turabian StyleÖzcan Kilcan, Cansu, Uku Andreas Reigo, and Alan H. Tkaczyk. 2025. "Development of an Advanced Life Cycle Impact Assessment Method to Evaluate Radioactivity in Construction Materials" Recycling 10, no. 5: 195. https://doi.org/10.3390/recycling10050195
APA StyleÖzcan Kilcan, C., Reigo, U. A., & Tkaczyk, A. H. (2025). Development of an Advanced Life Cycle Impact Assessment Method to Evaluate Radioactivity in Construction Materials. Recycling, 10(5), 195. https://doi.org/10.3390/recycling10050195