High-Conductive Multilayer TiOX-Ti3C2TX Electrocatalyst for Longevous Metal-Oxygen Battery under a High Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of TiOX-Ti3C2TX
2.2. Electrochemical Measurement
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Ding, T.; Zhou, Q.; Sun, Y.; Qu, M.; Zeng, Z.; Ju, Y.; Li, L.; Wang, K.; Chi, F. A review of technologies and applications on versatile energy storage systems. Renew. Sust. Energy Rev. 2021, 148, 111263. [Google Scholar] [CrossRef]
- Hussain, I.; Lamiel, C.; Sahoo, S.; Ahmad, M.; Chen, X.; Javed, M.S.; Qin, N.; Gu, S.; Li, Y.; Nawaz, T.; et al. Factors affecting the growth formation of nanostructures and their impact on electrode materials: A systematic review. Mater. Today Phys. 2022, 27, 100844. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, Y.; Ke, X.; Zhang, Z.; Wu, W.; Lin, G.; Zhou, Z.; Shi, Z. Coupling of triporosity and strong Au–Li interaction to enable dendrite-free lithium plating/stripping for long-life lithium metal anodes. J. Mater. Chem. A 2020, 8, 18094–18105. [Google Scholar] [CrossRef]
- Balaish, M.; Jung, J.-W.; Kim, I.-D.; Ein-Eli, Y. A Critical Review on Functionalization of Air-Cathodes for Nonaqueous Li–O2 Batteries. Adv. Funct. Mater. 2020, 30, 1808303. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Q.; Lu, Y.; Hao, Z.; Ni, Y.; Chen, J. An Ionic Liquid Electrolyte with Enhanced Li+ Transport Ability Enables Stable Li Deposition for High-Performance Li-O2 Batteries. Angew. Chem. Int. Edit. 2021, 60, 25973–25980. [Google Scholar] [CrossRef]
- Cao, D.; Bai, Y.; Zhang, J.; Tan, G.; Wu, C. Irreplaceable carbon boosts Li-O2 batteries: From mechanism research to practical application. Nano Energy 2021, 89, 106464. [Google Scholar] [CrossRef]
- Cao, D.; Zheng, L.; Li, Q.; Zhang, J.; Dong, Y.; Yue, J.; Wang, X.; Bai, Y.; Tan, G.; Wu, C. Crystal Phase-Controlled Modulation of Binary Transition Metal Oxides for Highly Reversible Li–O2 Batteries. Nano Lett. 2021, 21, 5225–5232. [Google Scholar] [CrossRef]
- Liu, G.; Wang, N.; Qi, F.; Lu, X.; Liang, Y.; Sun, Z. Novel Ni–Ge–P anodes for lithium-ion batteries with enhanced reversibility and reduced redox potential. Inorg. Chem. Front. 2023, 10, 699–711. [Google Scholar] [CrossRef]
- Hong, Y.-S.; Zhao, C.-Z.; Xiao, Y.; Xu, R.; Xu, J.-J.; Huang, J.-Q.; Zhang, Q.; Yu, X.; Li, H. Safe Lithium-Metal Anodes for Li-O2 Batteries: From Fundamental Chemistry to Advanced Characterization and Effective Protection. Batter. Supercaps 2019, 2, 638–658. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, J.; Liu, J.; Hou, C.; Xiu, Z.; Fan, Y.; Zhao, L.; Zhai, Y.; Li, H.; Zeng, J.; et al. Interfacial Super-Assembled Porous CeO2/C Frameworks Featuring Efficient and Sensitive Decomposing Li2O2 for Smart Li–O2 Batteries. Adv. Energy Mater. 2019, 9, 1901751. [Google Scholar] [CrossRef]
- Hu, Z.; Xie, Y.; Yu, D.; Liu, Q.; Zhou, L.; Zhang, K.; Li, P.; Hu, F.; Li, L.; Chou, S.; et al. Hierarchical Ti3C2Tx MXene/Carbon Nanotubes for Low Overpotential and Long-Life Li-CO2 Batteries. ACS Nano 2021, 15, 8407–8417. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Tian, M.; Wang, H.; Wei, C.; Sun, Z.; Rummeli, M.H.; Strasser, P.; Sun, J.; Yang, R. Mildly Oxidized MXene (Ti3C2, Nb2C, and V2C) Electrocatalyst via a Generic Strategy Enables Longevous Li–O2 Battery under a High Rate. ACS Nano 2021, 15, 19640–19650. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Liu, H.; Xing, Y.; Zhao, L.; Shang, Y.; Huang, Y.; Chen, N.; Li, L.; Wu, F.; Chen, R. Local Strong Solvation Electrolyte Trade-Off between Capacity and Cycle Life of Li-O2 Batteries. Adv. Funct. Mater. 2021, 31, 2101831. [Google Scholar] [CrossRef]
- Li, J.; Ding, S.; Zhang, S.; Yan, W.; Ma, Z.-F.; Yuan, X.; Mai, L.; Zhang, J. Catalytic redox mediators for non-aqueous Li-O2 battery. Energy Storage Mater. 2021, 43, 97–119. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Li, F.; Zheng, L.; Xu, J.; Yu, J. A Bifunctional Photo-Assisted Li–O2 Battery Based on a Hierarchical Heterostructured Cathode. Adv. Mater. 2020, 32, 1907098. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.; Peng, S.; Yuan, Y.; Wang, J.; Du, Y.; Zhang, W.; Han, K.; Ji, Y.; Dang, F. Ti3C2Tx MXene cathode catalyst with efficient decomposition Li2O2 and high-rate cycle stability for Li-O2 batteries. Electrochim. Acta 2021, 388, 138622. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, L.; Xu, H.; Huang, Q.; Wang, Y.; Hou, C.; Hou, Y.; Wang, J.; Dang, F.; Zhang, J. Tunable Cationic Vacancies of Cobalt Oxides for Efficient Electrocatalysis in Li–O2 Batteries. Adv. Energy Mater. 2020, 10, 2001415. [Google Scholar] [CrossRef]
- McCloskey, B.D.; Scheffler, R.; Speidel, A.; Girishkumar, G.; Luntz, A.C. On the Mechanism of Nonaqueous Li–O2 Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li–Air Batteries. J. Phys. Chem. C 2012, 116, 23897–23905. [Google Scholar] [CrossRef]
- Nam, S.; Mahato, M.; Matthews, K.; Lord, R.W.; Lee, Y.; Thangasamy, P.; Ahn, C.W.; Gogotsi, Y.; Oh, I.-K. Bimetal Organic Framework–Ti3C2Tx MXene with Metalloporphyrin Electrocatalyst for Lithium–Oxygen Batteries. Adv. Funct. Mater. 2022, 33, 2210702. [Google Scholar] [CrossRef]
- Peng, C.; Wei, P.; Li, X.; Liu, Y.; Cao, Y.; Wang, H.; Yu, H.; Peng, F.; Zhang, L.; Zhang, B.; et al. High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy 2018, 53, 97–107. [Google Scholar] [CrossRef]
- Plunkett, S.T.; Kondori, A.; Chung, D.Y.; Wen, J.; Wolfman, M.; Lapidus, S.H.; Ren, Y.; Amine, R.; Amine, K.; Mane, A.U.; et al. A New Cathode Material for a Li–O2 Battery Based on Lithium Superoxide. ACS Energy Lett. 2022, 7, 2619–2626. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, Q.; Mu, X.; Deng, H.; He, P.; Yu, J.; Zhou, H. Advanced Hybrid Electrolyte Li-O2 Battery Realized by Dual Superlyophobic Membrane. Joule 2019, 3, 2986–3001. [Google Scholar] [CrossRef]
- Song, S.; Yin, F.; Fu, Y.; Ren, J.; Ma, J.; Liu, Y.; Ma, R.; Ye, W. Simultaneous regulation of Li-ion intercalation and oxygen termination decoration on Ti3C2Tx MXene toward enhanced oxygen electrocatalysis for Li-O2 batteries. Chem. Eng. J. 2023, 451, 138818. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, K.; Zhang, C.; Yu, H.; Wang, X.; Yang, D.; Wang, J.; Huang, G.; Zhang, S. A Novel Material for High-Performance Li–O2 Battery Separator: Polyetherketone Nanofiber Membrane. Small 2022, 18, 2201470. [Google Scholar] [CrossRef]
- Sung, M.-C.; Lee, G.-H.; Kim, D.-W. Kinetic insight into perovskite La0.8Sr0.2VO3 nanofibers as an efficient electrocatalytic cathode for high-rate Li-O2 batteries. InfoMat 2021, 3, 1295–1310. [Google Scholar] [CrossRef]
- Guo, S.; Wang, J.; Sun, Y.; Peng, L.; Li, C. Interface engineering of Co3O4/CeO2 heterostructure in-situ embedded in Co/N-doped carbon nanofibers integrating oxygen vacancies as effective oxygen cathode catalyst for Li-O2 battery. Chem. Eng. J. 2023, 452, 139317. [Google Scholar] [CrossRef]
- Wang, D.; Mu, X.; He, P.; Zhou, H. Materials for advanced Li-O2 batteries: Explorations, challenges and prospects. Mater. Today 2019, 26, 87–99. [Google Scholar] [CrossRef]
- Abdul, M.; Mohd, Z.; Qasim, A.; Ahmed, M.; Ahmad, H.; Elsayed t El Fatimah, M.A.; Norah, S.A.; Shafaqat, A.; Muhammad, S.J. In Situ Nitrogen Functionalization of 2D-Ti3C2TX-MXenes for High-Performance Zn-Ion Supercapacitor. Molecules 2022, 27, 7446. [Google Scholar] [CrossRef]
- Yan, Y.; Shu, C.; Zheng, R.; Li, M.; Ran, Z.; He, M.; Ren, L.; Du, D.; Zeng, Y. Long-cycling lithium-oxygen batteries enabled by tailoring Li nucleation and deposition via lithiophilic oxygen vacancy in Vo-TiO2/Ti3C2TX composite anodes. J. Energy Chem. 2022, 65, 654–665. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Li, M.; Zheng, L.; Guan, D.; Huang, X.; Xu, J.; Yu, J. Porous Materials Applied in Nonaqueous Li–O2 Batteries: Status and Perspectives. Adv. Mater. 2020, 32, 2002559. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, N.; Bi, Z.; Gao, S.; Dai, Q.; Yang, T.; Wang, J.; Jia, Z.; Peng, Z.; Huang, J.; et al. Clear Representation of Surface Pathway Reactions at Ag Nanowire Cathodes in All-Solid Li–O2 Batteries. ACS Appl. Mater. Interfaces 2021, 13, 39157–39164. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zheng, R.; Shu, C.; Long, J. Promoting the Electrocatalytic Activity of Ti3C2Tx MXene by Modulating CO2 Adsorption through Oxygen Vacancies for High-Performance Lithium-Carbon Dioxide Batteries. ChemElectroChem 2020, 7, 4922–4930. [Google Scholar] [CrossRef]
- Xiong, D.; Li, X.; Bai, Z.; Lu, S. Recent Advances in Layered Ti3C2Tx MXene for Electrochemical Energy Storage. Small 2018, 14, 1703419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Q.; Huang, G.; Yu, Y.; Li, C.-L.; Li, J.-C.; Yan, J.-M.; Zhang, X.-B. Soluble and Perfluorinated Polyelectrolyte for Safe and High-Performance Li-O2 Batteries. Angew. Chem. Int. Edit. 2022, 61, e202116635. [Google Scholar] [CrossRef]
- Yoo, E.; Zhou, H. LiF Protective Layer on a Li Anode: Toward Improving the Performance of Li–O2 Batteries with a Redox Mediator. ACS Appl. Mater. Interfaces 2020, 12, 18490–18495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P.A.; Qin, S.; Han, M.; Yang, W.; Liu, J.; et al. Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity. Adv. Mater. 2020, 32, 2001093. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, S.; Ma, J.; Huang, A.; Yuan, M.; Li, Y.; Sun, G.; Chen, C.; Nan, C. Oxygen Vacancy-Rich RuO2–Co3O4 Nanohybrids as Improved Electrocatalysts for Li–O2 Batteries. ACS Appl. Mater. Interfaces 2021, 13, 39239–39247. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Zhang, F.; Zhan, F.; Yi, D.; Yang, Y.; Cui, W.; Wang, X. Fe3+-stabilized Ti3C2Tx MXene enables ultrastable Li-ion storage at low temperature. J. Mater. Sci. Technol. 2021, 67, 156–164. [Google Scholar] [CrossRef]
- Zheng, R.; Shu, C.; Hou, Z.; Hu, A.; Hei, P.; Yang, T.; Li, J.; Liang, R.; Long, J. In Situ Fabricating Oxygen Vacancy-Rich TiO2 Nanoparticles via Utilizing Thermodynamically Metastable Ti Atoms on Ti3C2Tx MXene Nanosheet Surface To Boost Electrocatalytic Activity for High-Performance Li–O2 Batteries. ACS Appl. Mater. Interfaces 2019, 11, 46696–46704. [Google Scholar] [CrossRef]
- Zhou, Y.; Yin, K.; Gu, Q.; Tao, L.; Li, Y.; Tan, H.; Zhou, J.; Zhang, W.; Li, H.; Guo, S. Lewis-Acidic PtIr Multipods Enable High-Performance Li–O2 Batteries. Angew. Chem. Int. Edit. 2021, 60, 26592–26598. [Google Scholar] [CrossRef]
- Zheng, X.; Yuan, M.; Guo, D.; Wen, C.; Li, X.; Huang, X.; Li, H.; Sun, G. Theoretical Design and Structural Modulation of a Surface-Functionalized Ti3C2Tx MXene-Based Heterojunction Electrocatalyst for a Li–Oxygen Battery. ACS Nano 2022, 16, 4487–4499. [Google Scholar] [CrossRef]
- Lu, Y.; Ang, H.; Yan, Q.; Fong, E. Bioinspired Synthesis of Hierarchically Porous MoO2/Mo2C Nanocrystal Decorated N-Doped Carbon Foam for Lithium–Oxygen Batteries. Chem. Mater. 2016, 28, 5743–5752. [Google Scholar] [CrossRef]
- Liu, J.; Li, D.; Wang, Y.; Zhang, S.; Kang, Z.; Xie, H.; Sun, L. MoO2 nanoparticles/carbon textiles cathode for high performance flexible Li-O2 battery. J. Energy Chem. 2020, 47, 66–71. [Google Scholar] [CrossRef]
- Cao, X.; Sun, Z.; Zheng, X.; Jin, C.; Tian, J.; Li, X.; Yang, R. MnCo2O4/MoO2 Nanosheets Grown on Ni foam as Carbon- and Binder-Free Cathode for Lithium–Oxygen Batteries. ChemSusChem 2018, 11, 574–579. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Zhao, S.; Zhang, J. High-Conductive Multilayer TiOX-Ti3C2TX Electrocatalyst for Longevous Metal-Oxygen Battery under a High Rate. Batteries 2023, 9, 205. https://doi.org/10.3390/batteries9040205
Sun Z, Zhao S, Zhang J. High-Conductive Multilayer TiOX-Ti3C2TX Electrocatalyst for Longevous Metal-Oxygen Battery under a High Rate. Batteries. 2023; 9(4):205. https://doi.org/10.3390/batteries9040205
Chicago/Turabian StyleSun, Zhihui, Shuai Zhao, and Jixiong Zhang. 2023. "High-Conductive Multilayer TiOX-Ti3C2TX Electrocatalyst for Longevous Metal-Oxygen Battery under a High Rate" Batteries 9, no. 4: 205. https://doi.org/10.3390/batteries9040205
APA StyleSun, Z., Zhao, S., & Zhang, J. (2023). High-Conductive Multilayer TiOX-Ti3C2TX Electrocatalyst for Longevous Metal-Oxygen Battery under a High Rate. Batteries, 9(4), 205. https://doi.org/10.3390/batteries9040205