Experimental Investigation for the Phase Change Material Barrier Area Effect on the Thermal Runaway Propagation Prevention of Cell-to-Pack Batteries
Abstract
:1. Introduction
2. Experiment
2.1. Material of Heat Insulation Barrier
2.2. Preparation Process
2.3. Experimental Installation
3. Result
3.1. Phase Change Properties
3.2. Flame Gun Test
3.3. Temperature and Voltage of Thermal Barriers with Different Areas
3.4. TR Behavior of Thermal Barriers with Different Areas
3.5. Wreckage of Thermal Barriers with Different Areas
3.6. Heat Transfer Path
3.7. Temperature Test of Charge–Discharge Cycle
4. Conclusions
- (1)
- Hydrogel was synthesized with sodium polyacrylate as the base material, and the thermal barrier was obtained by adding this base material to aramid fiber.
- (2)
- Hydrogels with different water absorption ratios were compared. Hydrogels with higher water absorption had a higher phase change temperature and longer phase change interval.
- (3)
- The thermal barrier had a significant impact on the TRP behavior. A thermal barrier with complete area coverage prevents TRP, whereas a thermal barrier with gaps can prolong the propagation time, but it cannot wholly prevent TRP. The thermal barrier with smaller area coverage fails to prevent TRP.
- (4)
- The battery deforms during the TRP process, opposite to the propagation direction.
- (5)
- The thermal barrier can not only solve the problem of the TRP of battery heat, but can also reduce the temperature of the battery during charging and discharging.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, W.; Guo, Y.; Shang, Z.; Zhang, Y.; Xu, S. A review on comprehensive recycling of spent power lithium-ion battery in China. eTransportation 2022, 11, 100155. [Google Scholar] [CrossRef]
- Hu, G.; Huang, P.; Bai, Z.; Wang, Q.; Qi, K. Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery. eTransportation 2021, 10, 100140. [Google Scholar] [CrossRef]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Chen, S.; Wei, X.; Garg, A.; Gao, L. A comprehensive flow rate optimization design for a novel air-liquid cooling coupled battery thermal management system. J. Electrochem. Energy Convers. Storage 2020, 18, 1–16. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, G.; Zhu, J.; Feng, X.; Wei, X.; Ouyang, M.; Dai, H. Multi-objective optimization design and experimental investigation for a parallel liquid cooling-based Lithium-ion battery module under fast charging. Appl. Therm. Eng. 2022, 211, 118503. [Google Scholar] [CrossRef]
- Feng, X.; Zheng, S.; Ren, D.; He, X.; Wang, L.; Liu, X.; Li, M.; Ouyang, M. Key Characteristics for Thermal Runaway of Li-ion Batteries. Energy Procedia 2019, 158, 4684–4689. [Google Scholar] [CrossRef]
- Report on the Accident of Battery Thermal Runaway. Available online: https://chuneng.bjx.com.cn/news/20220315/1210164.shtml (accessed on 16 October 2022).
- Feng, X.; Ren, D.; He, X.; Ouyang, M. Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule 2020, 4, 743–770. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, G.; Wu, C.; Huang, W.; Xu, C.; Jin, C.; Wu, Y.; Jiang, Z.; Dai, H.; Feng, X.; et al. Multi-objective optimization design for a double-direction liquid heating system-based Cell-to-Chassis battery module. Int. J. Heat Mass Transf. 2021, 183, 122184. [Google Scholar] [CrossRef]
- Lai, X.; Jin, C.; Yi, W.; Han, X.; Feng, X.; Zheng, Y.; Ouyang, M. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives. Energy Storage Mater. 2020, 35, 470–499. [Google Scholar] [CrossRef]
- Jin, C.; Sun, Y.; Wang, H.; Lai, X.; Wang, S.; Chen, S.; Rui, X.; Zheng, Y.; Feng, X.; Wang, H.; et al. Model and experiments to investigate thermal runaway characterization of lithium-ion batteries induced by external heating method. J. Power Sources 2021, 504, 230065. [Google Scholar] [CrossRef]
- Jin, C.; Sun, Y.; Wang, H.; Zheng, Y.; Wang, S.; Rui, X.; Xu, C.; Feng, X.; Wang, H.; Ouyang, M. Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling. Appl. Energy 2022, 312, 11876. [Google Scholar] [CrossRef]
- Ren, D.; Hsu, H.; Li, R.; Feng, X.; Guo, D.; Han, X.; Lu, L.; He, X.; Gao, S.; Hou, J.; et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries. eTransportation 2019, 2, 100034. [Google Scholar] [CrossRef]
- Yin, H.; Ma, S.; Li, H.; Wen, G.; Santhanagopalan, S.; Zhang, C. Modeling strategy for progressive failure prediction in lithium-ion batteries under mechanical abuse. eTransportation 2020, 7, 100098. [Google Scholar] [CrossRef]
- Wang, H.; Xu, H.; Zhao, Z.; Wang, Q.; Jin, C.; Li, Y.; Sheng, J.; Li, K.; Du, Z.; Xu, C.; et al. An experimental analysis on thermal runaway and its propagation in Cell-to-Pack lithium-ion batteries. Appl. Therm. Eng. 2022, 211, 118418. [Google Scholar] [CrossRef]
- Peralta, D.; Salomon, J.; Reynier, Y.; Martin, J.-F.; De Vito, E.; Colin, J.-F.; Boulineau, A.; Bourbon, C.; Amestoy, B.; Tisseraud, C.; et al. Influence of Al and F surface modifications on the sudden death effect of Si-Gr/Li1.2Ni0.2Mn0.6O2 Li-Ion cells. Electrochim. Acta 2021, 400, 139419. [Google Scholar] [CrossRef]
- Spotnitz, R.; Franklin, J. Abuse behavior of high-power, lithium-ion cells. J. Power Sources 2003, 113, 81–100. [Google Scholar] [CrossRef]
- Wu, H.; Chen, S.; Chen, J.; Jin, C.; Xu, C.; Rui, X.; Hsu, H.; Zheng, Y.; Feng, X. Dimensionless normalized concentration based thermal-electric regression model for the thermal runaway of lithium-ion batteries. J. Power Sources 2022, 521, 230958. [Google Scholar] [CrossRef]
- Jones, C.; Li, B.; Tomar, V. Determining the effects of non-catastrophic nail puncture on the operational performance and service life of small soft case commercial Li-ion prismatic cells. eTransportation 2021, 8, 100109. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, J.; Wang, S.; Ma, Q.; Zou, D. Shape-stabilized phase change material with internal coolant channel coupled with phase change emulsion for power battery thermal management. Chem. Eng. J. 2022, 438, 135648. [Google Scholar] [CrossRef]
- Rajan, J.T.; Jayapal, V.S.; Krishna, M.; Firose, K.M.; Vaisakh, S.; John, A.K.; Suryan, A. Analysis of Battery Thermal Management System for Electric Vehicles using 1-Tetradecanol Phase Change Material. Sustain. Energy Technol. Assess. 2022, 51, 101943. [Google Scholar] [CrossRef]
- Sun, M.; Liu, T.; Li, M.; Tan, J.; Tian, P.; Wang, H.; Chen, G.; Jiang, D.; Liu, X. A deep supercooling eutectic phase change material for low-temperature battery thermal management. J. Energy Storage 2022, 50, 104240. [Google Scholar] [CrossRef]
- Peng, P.; Wang, Y.; Jiang, F. Numerical study of PCM thermal behavior of a novel PCM-heat pipe combined system for Li-ion battery thermal management. Appl. Therm. Eng. 2022, 209, 118293. [Google Scholar] [CrossRef]
- Huang, Q.; Li, X.; Zhang, G.; Kan, Y.; Li, C.; Deng, J.; Wang, C. Flexible composite phase change material with anti-leakage and anti-vibration properties for battery thermal management. Appl. Energy 2022, 309, 118434. [Google Scholar] [CrossRef]
- Chen, S.; Garg, A.; Gao, L.; Wei, X. An experimental investigation for a hybrid phase change material-liquid cooling strategy to achieve high-temperature uniformity of Li-ion battery module under fast charging. Int. J. Energy Res. 2020, 45, 6198–6212. [Google Scholar] [CrossRef]
- Kshetrimayum, K.S.; Yoon, Y.-G.; Gye, H.-R.; Lee, C.-J. Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system. Appl. Therm. Eng. 2019, 159, 113797. [Google Scholar] [CrossRef]
- Niu, J.; Deng, S.; Gao, X.; Niu, H.; Fang, Y.; Zhang, Z. Experimental study on low thermal conductive and flame retardant phase change composite material for mitigating battery thermal runaway propagation. J. Energy Storage 2021, 47, 103557. [Google Scholar] [CrossRef]
- Weng, J.; Xiao, C.; Ouyang, D.; Yang, X.; Chen, M.; Zhang, G.; Yuen, R.K.K.; Wang, J. Mitigation effects on thermal runaway propagation of structure-enhanced phase change material modules with flame retardant additives. Energy 2021, 239, 122087. [Google Scholar] [CrossRef]
- Li, L.; Xu, C.; Chang, R.; Yang, C.; Jia, C.; Wang, L.; Song, J.; Li, Z.; Zhang, F.; Fang, B.; et al. Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules. Energy Storage Mater. 2021, 40, 329–336. [Google Scholar] [CrossRef]
- Yuan, S.; Chang, C.; Yan, S.; Zhou, P.; Qian, X.; Yuan, M.; Liu, K. A review of fire-extinguishing agent on suppressing lithium-ion batteries fire. J. Energy Chem. 2021, 62, 262–280. [Google Scholar] [CrossRef]
- Yang, X.; Duan, Y.; Feng, X.; Chen, T.; Xu, C.; Rui, X.; Ouyang, M.; Lu, L.; Han, X.; Ren, D.; et al. An Experimental Study on Preventing Thermal Runaway Propagation in Lithium-Ion Battery Module Using Aerogel and Liquid Cooling Plate Together. Fire Technol. 2020, 56, 2579–2602. [Google Scholar] [CrossRef]
- D Becher, M.; Bauer, H.; Döring, O.; Böse, B.; Friess, M.A. Danzer, Preventing thermal propagation in battery packs using enthalpy supported thermal barriers. J. Energy Storage 2021, 42, 103057. [Google Scholar] [CrossRef]
- Fregolente, L.V.; Gonçalves, H.L.; Fregolente, P.B.L.; Maciel, M.R.W.; Soares, J.B. Sodium polyacrylate hydrogel fixed bed to treat Water-Contaminated cloudy diesel. Fuel 2023, 332, 125953. [Google Scholar] [CrossRef]
Protection Scheme | Battery | Maximum Temperature | Drop Rate |
---|---|---|---|
Aerogel [27] | Prism cell | 691 °C | 0.4 °C/s |
Extinguishant [30] | 18650 | 840 °C | 0.4 °Cs |
Liquid-cooling plate [31] | Prism cell | 563.3 °C | 0.3 °C/s |
Title 1 | Title 2 |
---|---|
Energy of the triggered battery: E (W∙h) | Heating power: P (W) |
E < 100 | 30~300 |
100 ≤ E ≤ 400 | 300~1000 |
400 ≤ E ≤ 800 | 300~2000 |
Experiment | Size of Thermal Barrier (mm) | Area of Thermal Barrier (mm2) | Percentage of Covered Surface |
---|---|---|---|
NO.1 | 0 | 0 | 0% |
NO.2 | 108 × 78 | 8424 | 58.1% |
NO.3 | 128 × 88 | 11,204 | 77.2% |
NO.4 | 148 × 98 | 14,504 | 100% |
Device | Product Model | Measuring Range | Accuracy |
---|---|---|---|
Thermocouples | ETA GG-K-30 | 0~1250 °C | ±0.5 °C |
Data acquisition | HIOKI_LR 8410 | −200~2000 °C | ±1.5 °C |
Battery test cycler | NEWARE CT-4016-5 V 100 A | 0.025~5 V | Battery test cycler |
Heater | Ceramic heater | 220 V 600 W | ±5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, K.; Sun, J.; Xu, C.; WONG, S.K.; Zheng, Y.; Jin, C.; Wang, H.; Chen, S.; Feng, X. Experimental Investigation for the Phase Change Material Barrier Area Effect on the Thermal Runaway Propagation Prevention of Cell-to-Pack Batteries. Batteries 2023, 9, 206. https://doi.org/10.3390/batteries9040206
Shen K, Sun J, Xu C, WONG SK, Zheng Y, Jin C, Wang H, Chen S, Feng X. Experimental Investigation for the Phase Change Material Barrier Area Effect on the Thermal Runaway Propagation Prevention of Cell-to-Pack Batteries. Batteries. 2023; 9(4):206. https://doi.org/10.3390/batteries9040206
Chicago/Turabian StyleShen, Kai, Jieyu Sun, Chengshan Xu, Shaw Kang WONG, Yuejiu Zheng, Changyong Jin, Huaibin Wang, Siqi Chen, and Xuning Feng. 2023. "Experimental Investigation for the Phase Change Material Barrier Area Effect on the Thermal Runaway Propagation Prevention of Cell-to-Pack Batteries" Batteries 9, no. 4: 206. https://doi.org/10.3390/batteries9040206
APA StyleShen, K., Sun, J., Xu, C., WONG, S. K., Zheng, Y., Jin, C., Wang, H., Chen, S., & Feng, X. (2023). Experimental Investigation for the Phase Change Material Barrier Area Effect on the Thermal Runaway Propagation Prevention of Cell-to-Pack Batteries. Batteries, 9(4), 206. https://doi.org/10.3390/batteries9040206