Lithium Silicates in Anode Materials for Li-Ion and Li Metal Batteries
Abstract
:1. Introduction
2. Structures of Lithium Silicates
3. Electrochemical Properties and Formation Conditions of Lithium Silicates
3.1. Li4SiO4
3.2. Li2SiO3
3.3. Li2Si2O5
3.4. Li6Si2O7
4. Lithium Silicates in Silicon, Lithium Metal, and Other Anode Materials
4.1. Lithium Silicates in Silicon Anodes
4.2. Lithium Silicates in Lithium Metal Anodes
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamamura, H.; Nobuhara, K.; Nakanishi, S.; Iba, H.; Okada, S. Investigation of the Irreversible Reaction Mechanism and the Reactive Trigger on SiO Anode Material for Lithium-Ion Battery. J. Ceram. Soc. Jpn. 2011, 119, 855–860. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Guo, G.; Chen, C.; Jiao, Y.; Li, T.; Chen, X.; Yang, Y.; Yang, D.; Dong, A. An Affordable Manufacturing Method to Boost the Initial Coulombic Efficiency of Disproportionated SiO Lithium-Ion Battery Anodes. J. Power Sources 2019, 426, 116–123. [Google Scholar] [CrossRef]
- Hohl, A.; Wieder, T.; van Aken, P.A.; Weirich, T.E.; Denninger, G.; Vidal, M.; Oswald, S.; Deneke, C.; Mayer, J.; Fuess, H. An Interface Clusters Mixture Model for the Structure of Amorphous Silicon Monoxide (SiO). J. Non-Cryst. Solids 2003, 320, 255–280. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, C.-M.; Kim, H.; Kim, Y.-J.; Sohn, H.-J. Electrochemical Behavior of SiO Anode for Li Secondary Batteries. J. Electroanal. Chem. 2011, 661, 245–249. [Google Scholar] [CrossRef]
- Chen, T.; Wu, J.; Zhang, Q.; Su, X. Recent Advancement of SiOx Based Anodes for Lithium-Ion Batteries. J. Power Sources 2017, 363, 126–144. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhong, L.; Huang, S.; Mao, S.X.; Zhu, T.; Huang, J.Y. Size-Dependent Fracture of Silicon Nanoparticles During Lithiation. ACS Nano 2012, 6, 1522–1531. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhu, B.; Lu, Z.; Liu, N.; Zhu, J. Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery. Adv. Energy Mater. 2017, 7, 1700715. [Google Scholar] [CrossRef] [Green Version]
- Gu, M.; He, Y.; Zheng, J.; Wang, C. Nanoscale Silicon as Anode for Li-Ion Batteries: The Fundamentals, Promises, and Challenges. Nano Energy 2015, 17, 366–383. [Google Scholar] [CrossRef] [Green Version]
- Pan, K.; Zou, F.; Canova, M.; Zhu, Y.; Kim, J.-H. Systematic Electrochemical Characterizations of Si and SiO Anodes for High-Capacity Li-Ion Batteries. J. Power Sources 2019, 413, 20–28. [Google Scholar] [CrossRef]
- Hirata, A.; Kohara, S.; Asada, T.; Arao, M.; Yogi, C.; Imai, H.; Tan, Y.; Fujita, T.; Chen, M. Atomic-Scale Disproportionation in Amorphous Silicon Monoxide. Nat. Commun. 2016, 7, 11591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Yu, Q.; Zhao, Y.; He, R.; Xu, M.; Feng, S.; Li, S.; Zhou, L.; Mai, L. Silicon Oxides: A Promising Family of Anode Materials for Lithium-Ion Batteries. Chem. Soc. Rev. 2019, 48, 285–309. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Lee, M.J.; Oh, S.M.; Kim, J.J. Fading Mechanisms of Carbon-Coated and Disproportionated Si/SiOx Negative Electrode (Si/SiOx/C) in Li-Ion Secondary Batteries: Dynamics and Component Analysis by TEM. Electrochim. Acta 2012, 85, 369–376. [Google Scholar] [CrossRef]
- Jung, S.C.; Kim, H.-J.; Kim, J.-H.; Han, Y.-K. Atomic-Level Understanding toward a High-Capacity and High-Power Silicon Oxide (SiO) Material. J. Phys. Chem. C 2016, 120, 886–892. [Google Scholar] [CrossRef]
- Sivonxay, E.; Aykol, M.; Persson, K.A. The Lithiation Process and Li Diffusion in Amorphous SiO2 and Si from First-Principles. Electrochim. Acta 2020, 331, 135344. [Google Scholar] [CrossRef]
- Reynier, Y.; Vincens, C.; Leys, C.; Amestoy, B.; Mayousse, E.; Chavillon, B.; Blanc, L.; Gutel, E.; Porcher, W.; Hirose, T.; et al. Practical Implementation of Li Doped SiO in High Energy Density 21700 Cell. J. Power Sources 2020, 450, 227699. [Google Scholar] [CrossRef]
- Cao, C.; Abate, I.I.; Sivonxay, E.; Shyam, B.; Jia, C.; Moritz, B.; Devereaux, T.P.; Persson, K.A.; Steinrück, H.-G.; Toney, M.F. Solid Electrolyte Interphase on Native Oxide-Terminated Silicon Anodes for Li-Ion Batteries. Joule 2019, 3, 762–781. [Google Scholar] [CrossRef] [Green Version]
- Hirose, T.; Morishita, M.; Yoshitake, H.; Sakai, T. Study of Structural Changes That Occurred during Charge/Discharge of Carbon-Coated SiO Anode by Nuclear Magnetic Resonance. Solid State Ion. 2017, 303, 154–160. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Zheng, J.; Wang, Y.; Ju, Z.; Lu, G.; Sheng, O.; Nai, J.; Liu, T.; Zhang, W.; et al. Silicious Nanowires Enabled Dendrites Suppression and Flame Retardancy for Advanced Lithium Metal Anodes. Nano Energy 2021, 82, 105723. [Google Scholar] [CrossRef]
- Yu, B.-C.; Hwa, Y.; Kim, J.-H.; Sohn, H.-J. A New Approach to Synthesis of Porous SiOx Anode for Li-Ion Batteries via Chemical Etching of Si Crystallites. Electrochim. Acta 2014, 117, 426–430. [Google Scholar] [CrossRef]
- Yu, B.-C.; Hwa, Y.; Park, C.-M.; Sohn, H.-J. Reaction Mechanism and Enhancement of Cyclability of SiO Anodes by Surface Etching with NaOH for Li-Ion Batteries. J. Mater. Chem. A 2013, 1, 4820. [Google Scholar] [CrossRef]
- Hirose, T.; Morishita, M.; Yoshitake, H.; Sakai, T. Investigation of Carbon-Coated SiO Phase Changes during Charge/Discharge by X-Ray Absorption Fine Structure. Solid State Ion. 2017, 304, 1–6. [Google Scholar] [CrossRef]
- Coyle, J.; Apblett, C.; Brumbach, M.; Ohlhausen, J.; Stoldt, C. Structural and Compositional Characterization of RF Magnetron Cosputtered Lithium Silicate Films: From Li2Si2O5 to Lithium-Rich Li8SiO6. J. Vac. Sci. Technol. A 2017, 35, 061509. [Google Scholar] [CrossRef]
- Philippe, B.; Dedryvère, R.; Allouche, J.; Lindgren, F.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edström, K. Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-Ray Photoelectron Spectroscopy. Chem. Mater. 2012, 24, 1107–1115. [Google Scholar] [CrossRef]
- Chang, W.-S.; Park, C.-M.; Kim, J.-H.; Kim, Y.-U.; Jeong, G.; Sohn, H.-J. Quartz (SiO2): A New Energy Storage Anode Material for Li-Ion Batteries. Energy Environ. Sci. 2012, 5, 6895. [Google Scholar] [CrossRef]
- Veluchamy, A.; Doh, C.-H.; Kim, D.-H.; Lee, J.-H.; Lee, D.-J.; Ha, K.-H.; Shin, H.-M.; Jin, B.-S.; Kim, H.-S.; Moon, S.-I.; et al. Improvement of Cycle Behaviour of SiO/C Anode Composite by Thermochemically Generated Li4SiO4 Inert Phase for Lithium Batteries. J. Power Sources 2009, 188, 574–577. [Google Scholar] [CrossRef]
- Doh, C.-H.; Veluchamy, A.; Oh, M.-W.; Han, B.-C. Analysis on the Formation of Li4SiO4 and Li2SiO3 through First Principle Calculations and Comparing with Experimental Data Related to Lithium Battery. J. Electrochem. Sci. Technol. 2011, 2, 146–151. [Google Scholar] [CrossRef]
- Gong, Y.; Yu, X.; Yang, M.; Wei, J.; Shi, Y.; Huang, Z.; Lu, T.; Huang, W. A Facile Approach to Fabricate Li4SiO4 Ceramic Pebbles as Tritium Breeding Materials. Mater. Lett. 2015, 159, 245–248. [Google Scholar] [CrossRef]
- Wang, K.; Yin, Z.; Zhao, P. Synthesis of Macroporous Li4SiO4 via a Citric Acid-Based Sol–Gel Route Coupled with Carbon Coating and Its CO2 Chemisorption Properties. Ceram. Int. 2016, 42, 2990–2999. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Q.; Miao, J.; Zhang, J.; Zhang, D.; Chen, Y.; Yang, H. Synthesis of Graphene Supported Li2SiO3 as a High Performance Anode Material for Lithium-Ion Batteries. Appl. Surf. Sci. 2018, 444, 522–529. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, G.; Zhou, S.; Sun, Y.; Zhao, Q.; Gong, Y.; Lu, T.; Luo, C.; Yan, K. Enhanced Electrochemical Performance and Decreased Strain of Graphite Anode by Li2SiO3 and Li2CO3 Co-Modifying. Electrochim. Acta 2017, 223, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Yang, S.; Miao, J.; Lu, M.; Wen, T.; Sun, J. Graphene Supported Li2SiO3/Li4Ti5O12 Nanocomposites with Improved Electrochemical Performance as Anode Material for Lithium-Ion Batteries. Appl. Surf. Sci. 2017, 403, 635–644. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, S.; Miao, J.; Zhang, Y.; Zhang, D.; Chen, Y.; Li, Z. Synthesis of Graphene Supported Li2SiO3/Li2SnO3 Anode Material for Rechargeable Lithium Ion Batteries. Appl. Surf. Sci. 2019, 469, 253–261. [Google Scholar] [CrossRef]
- Yom, J.H.; Hwang, S.W.; Cho, S.M.; Yoon, W.Y. Improvement of Irreversible Behavior of SiO Anodes for Lithium Ion Batteries by a Solid State Reaction at High Temperature. J. Power Sources 2016, 311, 159–166. [Google Scholar] [CrossRef]
- Yan, M.-Y.; Li, G.; Zhang, J.; Tian, Y.-F.; Yin, Y.-X.; Zhang, C.-J.; Jiang, K.-C.; Xu, Q.; Li, H.-L.; Guo, Y.-G. Enabling SiOx/C Anode with High Initial Coulombic Efficiency through a Chemical Pre-Lithiation Strategy for High-Energy-Density Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 27202–27209. [Google Scholar] [CrossRef] [PubMed]
- Alemi, A.; Khademinia, S.; Sertkol, M. Part III: Lithium Metasilicate (Li2SiO3)—Mild Condition Hydrothermal Synthesis, Characterization and Optical Properties. Int. Nano Lett. 2015, 5, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Wen, Z.; Xu, X.; Wang, X.; Lin, J. Synthesis and Characterization of Li4SiO4 Nano-Powders by a Water-Based Sol-Gel Process. J. Nucl. Mater. 2009, 392, 471–475. [Google Scholar] [CrossRef]
- Li, M.; Zeng, Y.; Ren, Y.; Zeng, C.; Gu, J.; Feng, X.; He, H. Fabrication and Lithium Storage Performance of Sugar Apple-Shaped SiOx@C Nanocomposite Spheres. J. Power Sources 2015, 288, 53–61. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, B.; Fu, Z.-W. Lithium Electrochemistry of SiO2 Thin Film Electrode for Lithium-Ion Batteries. Appl. Surf. Sci. 2008, 254, 3774–3779. [Google Scholar] [CrossRef]
- Lener, G.; Otero, M.; Barraco, D.E.; Leiva, E.P.M. Energetics of Silica Lithiation and Its Applications to Lithium Ion Batteries. Electrochim. Acta 2018, 259, 1053–1058. [Google Scholar] [CrossRef] [Green Version]
- Alemi, A.; Khademinia, S.; Sertkol, M. Lithium Disilicate (Li2Si2O5): Mild Condition Hydrothermal Synthesis, Characterization and Optical Properties. J. Nanostruct. 2014, 4, 407–412. [Google Scholar]
- Koroleva, O.N.; Shtenberg, M.V.; Khvorov, P.V. Vibrational Spectroscopic and X-Ray Diffraction Study of Crystalline Phases in the Li2O-SiO2 System. Russ. J. Inorg. Chem. 2014, 59, 255–258. [Google Scholar] [CrossRef]
- Wang, Y.T.; Cao, Y.D.; Hu, J.; Zhang, W.J.; Wu, D.P.; Shen, L. Fabrication of Lithium Silicate Doped with Lithium Titanate by Solid-State Reaction and Its XRD Study. AMR 2012, 624, 200–203. [Google Scholar] [CrossRef]
- Prihandoko, B.; Sardjono, P.; Zulfia, A.; Siradj, E. The effect of Li2O on composite LTAP and windows glasses. Indones. J. Mater. Sci. 2007, 9, 6. [Google Scholar]
- Piazza, G.; Reimann, J.; Günther, E.; Knitter, R.; Roux, N.; Lulewicz, J.D. Behaviour of Ceramic Breeder Materials in Long Time Annealing Experiments. Fusion Eng. Des. 2001, 58–59, 653–659. [Google Scholar] [CrossRef]
- Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon, B.W.; Wu, J. Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. Adv. Energy Mater. 2014, 4, 1300882. [Google Scholar] [CrossRef]
- Zuo, X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y.-J. Silicon Based Lithium-Ion Battery Anodes: A Chronicle Perspective Review. Nano Energy 2017, 31, 113–143. [Google Scholar] [CrossRef]
- Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117, 10403–10473. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Y.; Cui, Y. Reviving the Lithium Metal Anode for High-Energy Batteries. Nat. Nanotech. 2017, 12, 194–206. [Google Scholar] [CrossRef]
- Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Wei, F.; Zhang, J.-G.; Zhang, Q. A Review of Solid Electrolyte Interphases on Lithium Metal Anode. Adv. Sci. 2016, 3, 1500213. [Google Scholar] [CrossRef]
- Philippe, B.; Dedryvère, R.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edström, K. Improved Performances of Nanosilicon Electrodes Using the Salt LiFSI: A Photoelectron Spectroscopy Study. J. Am. Chem. Soc. 2013, 135, 9829–9842. [Google Scholar] [CrossRef]
- Schroder, K.W.; Celio, H.; Webb, L.J.; Stevenson, K.J. Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes: Influence of Electrochemical Preparation and Ambient Exposure Conditions. J. Phys. Chem. C 2012, 116, 19737–19747. [Google Scholar] [CrossRef]
- Xiong, J.; Yang, J.; Wang, G.; Saeed, T.; Liu, Y.; Kaczmarek, S.E.; Lu, W.; Wu, Q. Investigations on the Effect of Current Density on SiO/Si Composite Electrodes. Electrochim. Acta 2021, 393, 139072. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, W.; Zhou, J.; Cai, W.; Lu, Y.; Liang, J.; Li, X.; Zhu, S.; Fu, Q.; Qian, Y. Prelithiated Surface Oxide Layer Enabled High-Performance Si Anode for Lithium Storage. ACS Appl. Mater. Interfaces 2019, 11, 18305–18312. [Google Scholar] [CrossRef]
- Huang, G.; Han, J.; Lu, Z.; Wei, D.; Kashani, H.; Watanabe, K.; Chen, M. Ultrastable Silicon Anode by Three-Dimensional Nanoarchitecture Design. ACS Nano 2020, 14, 4374–4382. [Google Scholar] [CrossRef] [PubMed]
- An, W.; Gao, B.; Mei, S.; Xiang, B.; Fu, J.; Wang, L.; Zhang, Q.; Chu, P.K.; Huo, K. Scalable Synthesis of Ant-Nest-like Bulk Porous Silicon for High-Performance Lithium-Ion Battery Anodes. Nat. Commun. 2019, 10, 1447. [Google Scholar] [CrossRef] [Green Version]
- Ge, M.; Fang, X.; Rong, J.; Zhou, C. Review of Porous Silicon Preparation and Its Application for Lithium-Ion Battery Anodes. Nanotechnology 2013, 24, 422001. [Google Scholar] [CrossRef]
- Ge, M.; Rong, J.; Fang, X.; Zhang, A.; Lu, Y.; Zhou, C. Scalable Preparation of Porous Silicon Nanoparticles and Their Application for Lithium-Ion Battery Anodes. Nano Res. 2013, 6, 174–181. [Google Scholar] [CrossRef]
- Ge, M.; Rong, J.; Fang, X.; Zhou, C. Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life. Nano Lett. 2012, 12, 2318–2323. [Google Scholar] [CrossRef]
- Jia, H.; Zheng, J.; Song, J.; Luo, L.; Yi, R.; Estevez, L.; Zhao, W.; Patel, R.; Li, X.; Zhang, J.-G. A Novel Approach to Synthesize Micrometer-Sized Porous Silicon as a High Performance Anode for Lithium-Ion Batteries. Nano Energy 2018, 50, 589–597. [Google Scholar] [CrossRef]
- Xiao, Q.; Gu, M.; Yang, H.; Li, B.; Zhang, C.; Liu, Y.; Liu, F.; Dai, F.; Yang, L.; Liu, Z.; et al. Inward Lithium-Ion Breathing of Hierarchically Porous Silicon Anodes. Nat. Commun. 2015, 6, 8844. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, X.; Li, H.; Zhai, T.; Zhou, H. Hierarchical Micro/Nano Porous Silicon Li-Ion Battery Anodes. Chem. Commun. 2012, 48, 5079. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, A.-Y.; Liu, G.; Woo, J.-Y.; Kim, H.; Lee, J.K. Li4SiO4-Based Artificial Passivation Thin Film for Improving Interfacial Stability of Li Metal Anodes. ACS Appl. Mater. Interfaces 2018, 10, 8692–8701. [Google Scholar] [CrossRef] [PubMed]
- Bieker, G.; Winter, M.; Bieker, P. Electrochemical in Situ Investigations of SEI and Dendrite Formation on the Lithium Metal Anode. Phys. Chem. Chem. Phys. 2015, 17, 8670–8679. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.-K.; Woo, S.-G.; Kim, J.-H.; Lee, S.-R.; Kim, Y.-J. Conductive Porous Carbon Film as a Lithium Metal Storage Medium. Electrochim. Acta 2015, 176, 172–178. [Google Scholar] [CrossRef]
- Kuo, D.-H.; Yang, D.-G. Thick SiO2 Films Obtained by Plasma-Enhanced Chemical Vapor Deposition Using Hexamethyldisilazane, Carbon Dioxide, and Hydrogen. J. Electrochem. Soc. 2000, 147, 2679. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, F.; Liu, Y.; Wang, X.; Zhang, K.; Zheng, L.; Wang, Z.; Bai, Y.; Wu, C. Rational Tuning of a Li4SiO4-Based Hybrid Interface with Unique Stepwise Prelithiation for Dendrite-Proof and High-Rate Lithium Anodes. ACS Appl. Mater. Interfaces 2020, 12, 39362–39371. [Google Scholar] [CrossRef]
- Liu, F.; Xiao, Q.; Wu, H.B.; Shen, L.; Xu, D.; Cai, M.; Lu, Y. Fabrication of Hybrid Silicate Coatings by a Simple Vapor Deposition Method for Lithium Metal Anodes. Adv. Energy Mater. 2018, 8, 1701744. [Google Scholar] [CrossRef]
- Yu, Y.; Yin, Y.-B.; Ma, J.-L.; Chang, Z.-W.; Sun, T.; Zhu, Y.-H.; Yang, X.-Y.; Liu, T.; Zhang, X.-B. Designing a Self-Healing Protective Film on a Lithium Metal Anode for Long-Cycle-Life Lithium-Oxygen Batteries. Energy Storage Mater. 2019, 18, 382–388. [Google Scholar] [CrossRef]
- Ju, Z.; Jin, C.; Yuan, H.; Yang, T.; Sheng, O.; Liu, T.; Liu, Y.; Wang, Y.; Ma, F.; Zhang, W.; et al. A Fast-Ion Conducting Interface Enabled by Aluminum Silicate Fibers for Stable Li Metal Batteries. Chem. Eng. J. 2021, 408, 128016. [Google Scholar] [CrossRef]
- Liang, W.; Lian, F.; Meng, N.; Lu, J.; Ma, L.; Zhao, C.-Z.; Zhang, Q. Adaptive Formed Dual-Phase Interface for Highly Durable Lithium Metal Anode in Lithium-Air Batteries. Energy Storage Mater. 2020, 28, 350–356. [Google Scholar] [CrossRef]
- Stone, G.M.; Mullin, S.A.; Teran, A.A.; Hallinan, D.T.; Minor, A.M.; Hexemer, A.; Balsara, N.P. Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries. J. Electrochem. Soc. 2012, 159, A222–A227. [Google Scholar] [CrossRef]
- Croce, F.; Appetecchi, G.B.; Persi, L.; Scrosati, B. Nanocomposite Polymer Electrolytes for Lithium Batteries. Nature 1998, 394, 456–458. [Google Scholar] [CrossRef]
- Rosero-Navarro, N.C.; Kajiura, R.; Jalem, R.; Tateyama, Y.; Miura, A.; Tadanaga, K. Significant Reduction in the Interfacial Resistance of Garnet-Type Solid Electrolyte and Lithium Metal by a Thick Amorphous Lithium Silicate Layer. ACS Appl. Energy Mater. 2020, 3, 5533–5541. [Google Scholar] [CrossRef]
Anode Material | Lithium Silicate Phase | Strategy | Capacity (mAh g−1) | C Rate | Cycle Number | Capacity Retention | Reference |
---|---|---|---|---|---|---|---|
Graphite | Li2SiO3 | Co-modified with Li2CO3 | 371 | 1 C | 50 | 96.2% | [30] |
Li4Ti5O12 | Li2SiO3 | Supported by graphene | 463 | ~0.3 C | 200 | 89.1% | [31] |
Si | Li2SiO3 | Core-shell structure | 3201 | ~1 C | 1000 | 39% | [53] |
Li | Li4SiO4 | Lithiating a-SiO2 coating | Excess Li | 0.5 C | 100 | 73.4% | [62] |
Li | Li4SiO4 | Lithiating nano a-SiO2 | Excess Li | 2 C | 300 | 74% | [66] |
Li | LixSiOy | Lithiating organosilicons | Excess Li | 0.3 C | 300 | ~60% | [67] |
Li | Li2SiO3 | Reducing interfacial resistance between Li/SSE | Excess Li | 0.18 C | 100 | ~82% | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.-S.; Hsiao, K.-C.; Sireesha, P.; Huang, J.-Y. Lithium Silicates in Anode Materials for Li-Ion and Li Metal Batteries. Batteries 2022, 8, 2. https://doi.org/10.3390/batteries8010002
Su Y-S, Hsiao K-C, Sireesha P, Huang J-Y. Lithium Silicates in Anode Materials for Li-Ion and Li Metal Batteries. Batteries. 2022; 8(1):2. https://doi.org/10.3390/batteries8010002
Chicago/Turabian StyleSu, Yu-Sheng, Kuang-Che Hsiao, Pedaballi Sireesha, and Jen-Yen Huang. 2022. "Lithium Silicates in Anode Materials for Li-Ion and Li Metal Batteries" Batteries 8, no. 1: 2. https://doi.org/10.3390/batteries8010002
APA StyleSu, Y. -S., Hsiao, K. -C., Sireesha, P., & Huang, J. -Y. (2022). Lithium Silicates in Anode Materials for Li-Ion and Li Metal Batteries. Batteries, 8(1), 2. https://doi.org/10.3390/batteries8010002