Femtosecond Laser Ablation-Induced Magnetic Phase Transformations in FeRh Thin Films
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crangle, J.; Goodman, G. The magnetization of pure iron and nickel. Proc. R. Soc. London. A. Math. Phys. Sci. 1971, 321, 477–491. [Google Scholar]
- Beaurepaire, E.; Merle, J.C.; Daunois, A.; Bigot, J.Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 1996, 76, 4250. [Google Scholar] [CrossRef]
- Van Kampen, M.; Jozsa, C.; Kohlhepp, J.T.; LeClair, P.; Lagae, L.; De Jonge, W.J.M.; Koopmans, B. All-optical probe of coherent spin waves. Phys. Rev. Lett. 2002, 88, 227201. [Google Scholar] [CrossRef] [PubMed]
- Bigot, J.Y.; Vomir, M.; Andrade, L.H.F.; Beaurepaire, E. Ultrafast magnetization dynamics in ferromagnetic cobalt: The role of the anisotropy. Chem. Phys. 2005, 318, 137–146. [Google Scholar] [CrossRef]
- Salikhov, R.; Alekhin, A.; Parpiiev, T.; Pezeril, T.; Makarov, D.; Abrudan, R.; Meckenstock, R.; Radu, F.; Farle, M.; Zabel, H.; et al. Gilbert damping in NiFeGd compounds: Ferromagnetic resonance versus time-resolved spectroscopy. Phys. Rev. B 2019, 99, 104412. [Google Scholar] [CrossRef]
- Scherbakov, A.V.; Salasyuk, A.S.; Akimov, A.V.; Liu, X.; Bombeck, M.; Brüggemann, C.; Yakovlev, D.R.; Sapega, V.F.; Furdyna, J.K.; Bayer, M. Coherent magnetization precession in ferromagnetic (Ga, Mn) As induced by picosecond acoustic pulses. Phys. Rev. Lett. 2010, 105, 117204. [Google Scholar] [CrossRef]
- Kim, J.W.; Vomir, M.; Bigot, J.Y. Ultrafast magnetoacoustics in nickel films. Phys. Rev. Lett. 2012, 109, 166601. [Google Scholar] [CrossRef]
- Vlasov, V.S.; Golov, A.V.; Kotov, L.N.; Shcheglov, V.I.; Lomonosov, A.M.; Temnov, V.V. The modern problems of ultrafast magnetoacoustics. Acoust. Phys. 2022, 68, 18–47. [Google Scholar] [CrossRef]
- Kimel, A.; Zvezdin, A.; Sharma, S.; Shallcross, S.; De Sousa, N.; García-Martín, A.; Salvan, G.; Hamrle, J.; Stejskal, O.; McCord, J.; et al. The 2022 magneto-optics roadmap. J. Phys. D Appl. Phys. 2022, 55, 463003. [Google Scholar] [CrossRef]
- Kisielewski, J.; Kurant, Z.; Sveklo, I.; Tekielak, M.; Wawro, A.; Maziewski, A. Magnetic phases in Pt/Co/Pt films induced by single and multiple femtosecond laser pulses. J. Appl. Phys. 2016, 119, 193901. [Google Scholar] [CrossRef]
- Urner-Wille, M.; Kobs, R.; Witter, K. Picosecond laser-induced change of the magnetic properties of amorphous GdFeBi-films. IEEE Trans. Magn. 1981, 17, 2621–2623. [Google Scholar] [CrossRef]
- Ehrler, J.; He, M.; Shugaev, M.V.; Polushkin, N.I.; Wintz, S.; Liersch, V.; Cornelius, S.; Hübner, R.; Potzger, K.; Lindner, J.; et al. Laser-rewriteable ferromagnetism at thin-film surfaces. ACS Appl. Mater. Interfaces 2018, 10, 15232–15239. [Google Scholar] [CrossRef] [PubMed]
- Polushkin, N.I.; Oliveira, V.; Vilar, R.; He, M.; Shugaev, M.V.; Zhigilei, L.V. Phase-change magnetic memory: Rewritable ferromagnetism by laser quenching of chemical disorder in Fe60Al40 alloy. Phys. Rev. Appl. 2018, 10, 024023. [Google Scholar] [CrossRef]
- Bali, R.; Wintz, S.; Meutzner, F.; Hübner, R.; Boucher, R.; Ünal, A.A.; Valencia, S.; Neudert, A.; Potzger, K.; Bauch, J.; et al. Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism. Nano Lett. 2014, 14, 435–441. [Google Scholar] [CrossRef]
- Strusch, T.; Lenz, K.; Meckenstock, R.; Bali, R.; Ehrler, J.; Lindner, J.; Fassbender, J.; Farle, M.; Potzger, K.; Semisalova, A. Spin pumping at interfaces with ferro-and paramagnetic Fe60Al40 films acting as spin source and spin sink. J. Appl. Phys. 2022, 132, 213906. [Google Scholar] [CrossRef]
- Stanciu, C.D.; Hansteen, F.; Kimel, A.V.; Kirilyuk, A.; Tsukamoto, A.; Itoh, A.; Rasing, T. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 2007, 99, 047601. [Google Scholar] [CrossRef]
- Vahaplar, K.; Kalashnikova, A.M.; Kimel, A.V.; Gerlach, S.; Hinzke, D.; Nowak, U.; Chantrell, R.; Tsukamoto, A.; Itoh, A.; Kirilyuk, A.; et al. All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling. Phys. Rev. B 2012, 85, 104402. [Google Scholar] [CrossRef]
- Ostler, T.A.; Barker, J.; Evans, R.F.L.; Chantrell, R.W.; Atxitia, U.; Chubykalo-Fesenko, O.; El Moussaoui, S.; Le Guyader, L.; Mengotti, E.; Heyderman, L.J.; et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 2012, 3, 666. [Google Scholar] [CrossRef]
- Lewis, L.H.; Marrows, C.H.; Langridge, S. Coupled magnetic, structural, and electronic phase transitions in FeRh. J. Phys. D Appl. Phys. 2016, 49, 323002. [Google Scholar] [CrossRef]
- Griggs, W.; Eggert, B.; Liedke, M.O.; Butterling, M.; Wagner, A.; Kentsch, U.; Hirschmann, E.; Grimes, M.; Caruana, A.J.; Kinane, C.; et al. Depth selective magnetic phase coexistence in FeRh thin films. APL Mater. 2020, 8, 121103. [Google Scholar] [CrossRef]
- Nadarajah, R.; Tahir, S.; Landers, J.; Koch, D.; Semisalova, A.S.; Wiemeler, J.; El-Zoka, A.; Kim, S.H.; Utzat, D.; Möller, R.; et al. Controlling the oxidation of magnetic and electrically conductive solid-solution iron-rhodium nanoparticles synthesized by laser ablation in liquids. Nanomaterials 2020, 10, 2362. [Google Scholar] [CrossRef]
- Heidarian, A.; Stienen, S.; Semisalova, A.; Yuan, Y.; Josten, E.; Hübner, R.; Salamon, S.; Wende, H.; Gallardo, R.; Grenzer, J.; et al. Ferromagnetic resonance of MBE-grown FeRh thin films through the metamagnetic phase transition. Phys. Status Solidi 2017, 254, 1700145. [Google Scholar] [CrossRef]
- Eggert, B.; Schmeink, A.; Lill, J.; Liedke, M.O.; Kentsch, U.; Butterling, M.; Wagner, A.; Pascarelli, S.; Potzger, K.; Lindner, J.; et al. Magnetic response of FeRh to static and dynamic disorder. RSC Adv. 2020, 10, 14386–14395. [Google Scholar] [CrossRef]
- Vogler, C.; Abert, C.; Bruckner, F.; Suess, D. Noise Reduction Based on an Fe- Rh Interlayer in Exchange-Coupled Heat-Assisted Recording Media. Phys. Rev. Appl. 2017, 8, 054021. [Google Scholar] [CrossRef]
- Feng, Z.; Yan, H.; Liu, Z. Electric-Field Control of Magnetic Order: From FeRh to Topological Antiferromagnetic Spintronics. Adv. Electron. Mater. 2019, 5, 1800466. [Google Scholar] [CrossRef]
- Qiao, K.; Liang, Y.; Zhang, H.; Hu, F.; Yu, Z.; Long, Y.; Wang, J.; Sun, J.; Zhao, T.; Shen, B. Manipulation of magnetocaloric effect in FeRh films by epitaxial growth. J. Alloys Compd. 2022, 907, 164574. [Google Scholar] [CrossRef]
- Vieira, R.M.; Eriksson, O.; Bergman, A.; Herper, H.C. High-throughput compatible approach for entropy estimation in magnetocaloric materials: FeRh as a test case. J. Alloys Compd. 2021, 857, 157811. [Google Scholar] [CrossRef]
- Chirkova, A.; Skokov, K.P.; Schultz, L.; Baranov, N.V.; Gutfleisch, O.; Woodcock, T.G. Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions. Acta Mater. 2016, 106, 15–21. [Google Scholar] [CrossRef]
- Bennett, S.P.; Ambaye, H.; Lee, H.; LeClair, P.; Mankey, G.J.; Lauter, V. Direct evidence of anomalous interfacial magnetization in metamagnetic Pd doped FeRh thin films. Sci. Rep. 2015, 5, 9142. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.B.; Li, J.; Wang, C.C.; Zhou, Z.J.; Cao, Q.Q.; Zhou, T.J.; Wang, D.H.; Du, Y.W. Electric field tuning of magnetocaloric effect in FeRh0.96Pd0.04/PMN-PT composite near room temperature. Appl. Phys. Lett. 2017, 110, 222408. [Google Scholar] [CrossRef]
- Barua, R.; Jiménez-Villacorta, F.; Lewis, L.H. Predicting magnetostructural trends in FeRh-based ternary systems. Appl. Phys. Lett. 2013, 103, 102407. [Google Scholar] [CrossRef]
- Urban, C.; Bennett, S.P.; Schuller, I.K. Hydrostatic pressure mapping of barium titanate phase transitions with quenched FeRh. Sci. Rep. 2020, 10, 6312. [Google Scholar] [CrossRef] [PubMed]
- Fina, I.; Fontcuberta, J. Strain and voltage control of magnetic and electric properties of FeRh films. J. Phys. D Appl. Phys. 2019, 53, 023002. [Google Scholar] [CrossRef]
- Fujita, N.; Matsui, T.; Kosugi, S.; Satoh, T.; Saitoh, Y.; Takano, K.; Koka, M.; Kamiya, T.; Seki, S.; Iwase, A. Micrometer-sized magnetic patterning of FeRh films using an energetic ion microbeam. Jpn. J. Appl. Phys. 2010, 49, 060211. [Google Scholar] [CrossRef]
- Koide, T.; Satoh, T.; Kohka, M.; Saitoh, Y.; Kamiya, T.; Ohkouchi, T.; Kotsugi, M.; Kinoshita, T.; Nakamura, T.; Iwase, A.; et al. Magnetic patterning of FeRh thin films by energetic light ion microbeam irradiation. Jpn. J. Appl. Phys. 2014, 53, 05FC06. [Google Scholar] [CrossRef]
- Heidarian, A.; Bali, R.; Grenzer, J.; Wilhelm, R.A.; Heller, R.; Yildirim, O.; Lindner, J.; Potzger, K. Tuning the antiferromagnetic to ferromagnetic phase transition in FeRh thin films by means of low-energy/low fluence ion irradiation. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 358, 251–254. [Google Scholar] [CrossRef]
- Bennett, S.P.; Herklotz, A.; Cress, C.D.; Ievlev, A.; Rouleau, C.M.; Mazin, I.I.; Lauter, V. Magnetic order multilayering in FeRh thin films by He-Ion irradiation. Mater. Res. Lett. 2018, 6, 106–112. [Google Scholar] [CrossRef]
- Cress, C.D.; Wickramaratne, D.; Rosenberger, M.R.; Hennighausen, Z.; Callahan, P.G.; LaGasse, S.W.; Bernstein, N.; van ’t Erve, O.M.; Jonker, B.T.; Qadri, S.B.; et al. Direct-Write of Nanoscale Domains with Tunable Metamagnetic Order in FeRh Thin Films. ACS Appl. Mater. Interfaces 2021, 13, 836–847. [Google Scholar] [CrossRef]
- Ju, G.; Hohlfeld, J.; Bergman, B.; van de Veerdonk, R.J.M.; Mryasov, O.N.; Kim, J.Y.; Wu, X.; Weller, D.; Koopmans, B. Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films. Phys. Rev. Lett. 2004, 93, 197403. [Google Scholar] [CrossRef]
- Bergman, B.; Ju, G.; Hohlfeld, J.; van de Veerdonk, R.J.M.; Kim, J.Y.; Wu, X.; Weller, D.; Koopmans, B. Identifying growth mechanisms for laser-induced magnetization in FeRh. Phys. Rev. B 2006, 73, 060407. [Google Scholar] [CrossRef]
- Pressacco, F.; Uhlíř, V.; Gatti, M.; Nicolaou, A.; Bendounan, A.; Arregi, J.A.; Patel, S.K.K.; Fullerton, E.E.; Krizmancic, D.; Sirotti, F. Laser induced phase transition in epitaxial FeRh layers studied by pump-probe valence band photoemission. Struct. Dyn. 2018, 5, 034501. [Google Scholar] [CrossRef]
- Awari, N.; Semisalova, A.; Deinert, J.C.; Lenz, K.; Lindner, J.; Fullerton, E.; Uhlíř, V.; Li, J.; Clemens, B.; Carley, R.; et al. Monitoring laser-induced magnetization in FeRh by transient terahertz emission spectroscopy. Appl. Phys. Lett. 2020, 117, 122407. [Google Scholar] [CrossRef]
- Temnov, V.V.; Armelles, G.; Woggon, U.; Guzatov, D.; Cebollada, A.; Garcia-Martin, A.; Garcia-Martin, J.M.; Thomay, T.; Leitenstorfer, A.; Bratschitsch, R. Active magneto-plasmonics in hybrid metal–ferromagnet structures. Nat. Photonics 2010, 4, 107–111. [Google Scholar] [CrossRef]
- Liu, J.M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 1982, 7, 196–198. [Google Scholar] [CrossRef] [PubMed]
- Dróżdż, P.; Ślęzak, M.; Matlak, K.; Kozioł-Rachwał, A.; Korecki, J.; Slezak, T. Spin-flop coupling induced large coercivity enhancement in Fe/FeRh/W(110) bilayers across ferromagnetic–antiferromagnetic phase transition of FeRh alloy. J. Magn. Magn. Mater. 2020, 498, 166258. [Google Scholar] [CrossRef]
- Xie, Y.; Zhan, Q.; Shang, T.; Yang, H.; Liu, Y.; Wang, B.; Li, R.W. Electric field control of magnetic properties in FeRh/PMN-PT heterostructures. AIP Adv. 2018, 8, 055816. [Google Scholar] [CrossRef]
- Staunton, J.B.; Banerjee, R.; Dias, M.d.S.; Deak, A.; Szunyogh, L. Fluctuating local moments, itinerant electrons, and the magnetocaloric effect: Compositional hypersensitivity of FeRh. Phys. Rev. B 2014, 89, 054427. [Google Scholar] [CrossRef]
- Arregi, J.A.; Caha, O.; Uhlíř, V. Evolution of strain across the magnetostructural phase transition in epitaxial FeRh films on different substrates. Phys. Rev. B 2020, 101, 174413. [Google Scholar] [CrossRef]
- Barton, C.W.; Ostler, T.A.; Huskisson, D.; Kinane, C.J.; Haigh, S.J.; Hrkac, G.; Thomson, T. Substrate induced strain field in FeRh epilayers grown on single crystal MgO (001) substrates. Sci. Rep. 2017, 7, 44397. [Google Scholar] [CrossRef]
- Temnov, V.V. Ultrafast Laser-Induced Phenomena in Solids Studied by Time-Resolved Interferometry; University of Duisburg-Essen: Duisburg, Germany, 2004. [Google Scholar]
- Sokolowski-Tinten, K.; Bialkowski, J.; Cavalleri, A.; von der Linde, D.; Oparin, A.; Meyer-ter-Vehn, J.; Anisimov, S.I. Transient states of matter during short pulse laser ablation. Phys. Rev. Lett. 1998, 81, 224. [Google Scholar] [CrossRef]
- Temnov, V.V.; Sokolowski-Tinten, K.; Zhou, P.; von der Linde, D. Ultrafast imaging interferometry at femtosecond-laser-excited surfaces. JOSA B 2006, 23, 1954–1964. [Google Scholar] [CrossRef]
- Ivanov, D.S.; Zhigilei, L.V. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 2003, 68, 064114. [Google Scholar] [CrossRef]
- Temnov, V.V.; Alekhin, A.; Samokhvalov, A.; Ivanov, D.S.; Lomonosov, A.; Vavassori, P.; Modin, E.; Veiko, V.P. Nondestructive femtosecond laser lithography of Ni nanocavities by controlled thermo-mechanical spallation at the nanoscale. Nano Lett. 2020, 20, 7912–7918. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varlamov, P.; Semisalova, A.; Nguyen, A.D.; Farle, M.; Laplace, Y.; Raynaud, M.; Noel, O.; Vavassori, P.; Temnov, V. Femtosecond Laser Ablation-Induced Magnetic Phase Transformations in FeRh Thin Films. Magnetochemistry 2023, 9, 186. https://doi.org/10.3390/magnetochemistry9070186
Varlamov P, Semisalova A, Nguyen AD, Farle M, Laplace Y, Raynaud M, Noel O, Vavassori P, Temnov V. Femtosecond Laser Ablation-Induced Magnetic Phase Transformations in FeRh Thin Films. Magnetochemistry. 2023; 9(7):186. https://doi.org/10.3390/magnetochemistry9070186
Chicago/Turabian StyleVarlamov, Pavel, Anna Semisalova, Anh Dung Nguyen, Michael Farle, Yannis Laplace, Michele Raynaud, Olivier Noel, Paolo Vavassori, and Vasily Temnov. 2023. "Femtosecond Laser Ablation-Induced Magnetic Phase Transformations in FeRh Thin Films" Magnetochemistry 9, no. 7: 186. https://doi.org/10.3390/magnetochemistry9070186
APA StyleVarlamov, P., Semisalova, A., Nguyen, A. D., Farle, M., Laplace, Y., Raynaud, M., Noel, O., Vavassori, P., & Temnov, V. (2023). Femtosecond Laser Ablation-Induced Magnetic Phase Transformations in FeRh Thin Films. Magnetochemistry, 9(7), 186. https://doi.org/10.3390/magnetochemistry9070186