Theory of Chiral Electrodeposition by Micro-Nano-Vortexes under a Vertical Magnetic Field-2: Chiral Three-Dimensional (3D) Nucleation by Nano-Vortexes
Abstract
:1. Introduction
2. Theory
2.1. Similarity of the MHD Vortexes in the Three Generations
2.1.1. Vorticity Coefficient Functions (VCF)
2.1.2. Occurrence of Chiral Symmetry
2.1.3. Conservation of Chiral Vortex Motion in the Three Generations
2.2. Characteristic Equations of 3D Nucleation under Nano-MHD Vortexes
2.2.1. Surface Height Equation in 3D Nucleation
2.2.2. Electrochemical Boundary Conditions
2.2.3. Characteristic Equations of the Nano-MHD Vortexes and 3D Nuclei
3. Results and Discussion
- (1)
- The rigid-surface vortex rotation, , of the upper generation, “i” and the external magnetic field, forms a right-handed system, , 0 or a left-handed system, 0. The vorticity coefficient function, , of the lower generation, “i+1”, is defined as a positive function, 0, for 0 and a negative function, , for 0.
- (2)
- The main part (MP) of the amplitude factor in a stationary solution (S.S.) in the lower generation, , is defined as positive, or negative, , depending on whether the nucleation in a stationary solution is “unstable” or “stable”.
- (3)
- The nucleation under the rigid-surface vortexes is determined to be unstable for and stable for .
- (4)
- For the unstable case, , the chirality of the lower generation, ‘i+1”, is changed from that of the upper generation, “i”, and for the stable case, , the chirality of the present lower generation, “i + 1”, preserves that of the upper generation, “i”. In Figure 9, we exhibit the flow chart for MHD vortexes to obtain chirality in the three generations and the actual chirality obtained in each generation in the absence and presence of chloride ions.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Symbols
x-coordinate (m), or nondimensional x-coordinate defined by . | |
y-coordinate (m), or nondimensional y-coordinate defined by | |
z-coordinate (m), or nondimensional z-coordinate defined by | |
X | nondimensional x-length of the electrode. |
Y | nondimensional y-length of the electrode. |
representative length of 3D nucleation in the 2nd generation. | |
representative length of the i generation (i = 1st, 2nd and 3rd) (m). | |
average diffusion layer thickness (m). | |
symmetrical concentration fluctuation of the metallic ion (mol m−3). | |
molar concentration of the metallic ion (mol m−3). | |
average surface concentration (mol m−3). | |
bulk concentration (mol m−3). | |
average value of (mol m−3). | |
average value of equal to (mol m−3). | |
concentration difference between the bulk and surface defined by in Equation (37c) (mol m−3). | |
H | concentration overpotential (V). |
H | symmetrical fluctuation of concentration overpotential (V). |
average concentration overpotential (V). | |
amplitude of on the rigid surface (j = r) and the free surface (j = f). | |
electrode potential (V). | |
equilibrium potential (V). | |
z-components of the velocity of a rigid-surface vortex (m s−1). | |
z-components of the velocity of a free-surface vortex (m s−1). | |
z-component of the vorticity of a rigid-surface vortex (s−1). | |
z-component of the vorticity of a free-surface vortex (s−1). | |
the vorticity coefficient function (VCF) of the rigid-surface vortexes defined by Equation (2) (i = 1st, 2nd, and 3rd). | |
the vorticity coefficient function (VCF) of the free-surface vortexes defined by Equation (5) (i = 1st, 2nd, and 3rd). | |
function of defined by Equation (6a). | |
function of defined by Equation (6b). | |
function of defined by Equation (6c). | |
function of defined by Equation (4a). | |
function of defined by Equation (4b). | |
function of defined by Equation (4c). | |
magneto-viscosity coefficient in the i generation defined by Equation (3a) (i = 1st, 2nd and 3rd) (m2 A−1 s−1). | |
rotation coefficient in the i generation defined by Equation (3b) (i = 1st, 2nd, and 3rd) (m−1). | |
magneto-induction coefficient in the i generation defined by Equation (3c) (i = 1st, 2nd and 3rd). | |
mass transfer coefficient in the ith generation defined by Equation (3d) (i = 1st, 2nd, and 3rd) (mol m−4 s). | |
coefficient of defined by Equation (8a) (m3 A−1 s−2). | |
coefficient of defined by Equation (8b) (m2 s−1). | |
coefficient of defined by Equation (8c) (s−1). | |
coefficient of defined by Equation (8d) (mol m−6 s). | |
representative kinematic viscosity of the i generation (i = 1st, 2nd and 3rd) (m2 s−1). | |
i | parameter defined by (m−1 s). |
external magnetic flux density (T). | |
solution density (kg m−3). | |
angular velocity of a VMHDF (s−1). | |
angular velocity of the upper-generation rigid-surface vortex ( non, a and s) (s−1). | |
electric conductivity (−1m−1). | |
concentration gradient, defined by Equation (37b) in the 2nd generation (mol m−4). | |
diffusion coefficient of the metallic ion (m2 s−1). | |
concentration difference between the bulk and surface defined by Equation (37c) (mol m−3). | |
average diffusion layer thickness (m). | |
function of the torque component of the rigid-surface MHD vortexes activated by the applied magnetic field defined by Equation (11a). | |
function of the torque component of the precession from the upper-generation rigid-surface vortexes defined by Equation (11b). | |
rewritten form of in the generation defined by Equation (13). | |
function of the torque component of the free-surface MHD vortexes activated by the applied magnetic field defined by Equation (15a). | |
function of the torque component of the precession from the upper-generation free-surface vortexes defined by Equation (15b). | |
rewritten form of in the generation defined by Equation (17). | |
the mass flux density of the metallic ion from the solution phase to the electrode surface (mol m−3 s−1). | |
the mass flux density of the adatom due to surface diffusion (mol m−2 s−1). | |
the mass flux density of the adatom due to the incorporation of the crystal lattice (mol m−3 s−1). | |
symmetrical fluctuation of the adatom concentration (mol m−3). | |
surface diffusion coefficient of the adatom (m2 s−1). | |
equilibrium surface concentration of the adatom (mol m−2). | |
universal gas constant, 8.31 (J K−1 mol−1). | |
absolute temperature (K). | |
F | Faraday constant (96,485 C mol−1). |
symmetrical fluctuation of the chemical potential of the adatoms by the change of surface form (J mol−1). | |
molar volume of the depositing metal (m3 mol−1). | |
isotropic surface free energy (J m−2). | |
surface height fluctuation of the deposit surface of 3D nuclei (m). | |
abbreviation of (m). | |
rigid-surface component of (m). | |
free-surface component of (m). | |
mean square (ms) value of at the initial steady state (m2). | |
amplitudes of on the rigid surface (j = r) and the free surface (j = f). | |
amplitude of the rigid-surface component of the initial surface height fluctuation . | |
amplitude of the free-surface component of the initial surface height fluctuation . | |
diffusion current fluctuation on 3D nuclei (A m−2). | |
rigid-surface component of (A m−2). | |
free-surface component of (A m−2). | |
the chemical potential of the adatoms. | |
symmetrical fluctuation of | |
the electrochemical potential of the metallic ions. | |
symmetrical fluctuation of | |
the electrochemical potential of the electrons. | |
concentration overpotential (V). | |
fluctuation of the concentration overpotential (V). | |
k | wavenumber defined by (m−1). |
x-component of the wavenumber (m−1). | |
y-component of the wavenumber (m−1). | |
nondimensional wavenumber common in every generation. | |
nondimensional wavenumber of the 2nd generation defined by . | |
x-component of the nondimensional wavenumber | |
y-component of the nondimensional wavenumber | |
the upper limit of the wavenumber . | |
autocorrelation distance of the symmetrical fluctuation. | |
vorticity coefficient of the rigid-surface vortexes. | |
vorticity coefficient of the free-surface vortexes. | |
amplitude factor under the rigid-surface vortexes (s−1). | |
amplitude factor under the free-surface vortexes (s−1). | |
amplitude factor in a stationary solution (s−1). | |
the nondimensional spatial spectrum of the surface height fluctuation. | |
the ratio of the rigid-surface component, . | |
the ratio of the free-surface component, | |
vorticity coefficient of rigid-surface MHD vortexes. | |
vorticity coefficient of free-surface MHD vortexes. | |
vorticity coefficient constant of rigid-surface nano-MHD vortexes defined by Equation (A6b). | |
vorticity coefficient constant of free-surface nano-MHD vortexes defined by Equation (A8b). | |
vorticity coefficient function of rigid-surface nano-MHD vortexes defined by Equations (A6c) and (A11a). | |
vorticity coefficient function of free-surface nano-MHD vortexes defined by Equations (A8c) and (A11b). | |
unit random complex number defined by Equation (A9). | |
normal random number between 0 and . | |
a general function of and . | |
even component concerning and of the function . | |
odd component concerning and of the function . | |
a | superscript of the asymmetrical fluctuation in the 1st generation. |
s | superscript of the symmetrical fluctuation in the 2nd generation. |
average over the electrode surface. | |
[ ] | sign of physical quantity. |
operator defined by | |
operator defined by | |
operator defined by . | |
operator defined by . | |
operator defined by or nondimensional operator defined by | |
operator describing a complex function. | |
Re | sign expressing the real part of a complex number or function. |
Im | sign expressing the imaginary part of a complex number or function. |
unit imaginary number. | |
even | sign expressing the even function. |
odd | sign expressing the odd function. |
NI | nucleation and MHD vortex instability. |
MHDV | MHD vortex. |
S.S. | stationary solution. |
rigid-surface vortex angular velocity of the upper generation, ‘i’. | |
vorticity coefficient function of the lower generation, ‘i + 1′. | |
the main part (MP) of the amplitude factor in a stationary solution (S.S.) in the lower generation, ‘i + 1′. | |
right-handed system in the upper generation, ‘i’. | |
right-handed system in the lower generation, ‘i + 1′. | |
left-handed system in the upper generation, ‘i’. | |
left-handed system in the lower generation, ‘i + 1′. | |
magnetic field | |
adatom of the deposit metal. | |
metallic ion at the inner Helmholtz plane (IHP). | |
charge number of the metallic ion. | |
free electron in the electrode. |
Appendix A. Calculation of 3D Nucleus Morphology
Appendix A.1. Initial Spectrum of Symmetrical Fluctuation
Appendix A.2. Formation Process of 3D Nuclei
References
- Morimoto, R.; Miura, M.; Sugiyama, A.; Miura, M.; Oshikiri, Y.; Mogi, I.; Yamauchi, Y.; Takagi, S.; Aogaki, R. Theory of Chiral Electrodeposition by Chiral Micro-Nano-Vortices under a Vertical Magnetic Field -1: 2D Nucleation by Micro-Vortices. Magnetochemistry 2022, 8, 71. [Google Scholar] [CrossRef]
- Takagi, S.; Asada, T.; Oshikiri, Y.; Miura, M.; Morimoto, R.; Sugiyama, A.; Mogi, I.; Aogaki, R. Nanobubble formation from ionic vacancies in an electrode reaction on a fringed electrode under a uniform vertical magnetic field -1. Formation process in a vertical magnetohydrodynamic (MHD) flow. J. Electroanal. Chem. 2022, 914, 116291. [Google Scholar] [CrossRef]
- Takagi, S.; Asada, T.; Oshikiri, Y.; Miura, M.; Morimoto, R.; Sugiyama, A.; Mogi, I.; Aogaki, R. Nanobubble formation from ionic vacancies in an electrode reaction on a fringed electrode under a uniform vertical magnetic field -2. Measurement of the angular velocity of a vertical magnetohydrodynamic (MHD) flow by the microbubbles originating from ionic vacancies. J. Electroanal. Chem. 2022, 916, 116375. [Google Scholar] [CrossRef]
- Aogaki, R. Theory of stable formation of ionic vacancy in a liquid solution. Electrochemistry 2008, 76, 458–465. [Google Scholar] [CrossRef]
- Aogaki, R.; Sugiyama, A.; Miura, M.; Oshikiri, Y.; Miura, M.; Morimoto, R.; Takagi, S.; Mogi, I.; Yamauchi, Y. Origin of nanobubbles electrochemically formed in a magnetic field: Ionic vacancy production in electrode reaction. Sci. Rep. 2016, 6, 28297. [Google Scholar] [CrossRef] [PubMed]
- Aogaki, R.; Motomura, K.; Sugiyama, A.; Morimoto, R.; Mogi, I.; Miura, M.; Asanuma, M.; Oshikiri, Y. Measurement of the lifetime of ionic vacancy by the cyclotron-MHD electrode. Magnetohydrodynamics 2012, 48, 289–297. [Google Scholar] [CrossRef]
- Sugiyama, A.; Morimoto, R.; Osaka, T.; Mogi, I.; Asanuma, M.; Miura, M.; Oshikiri, Y.; Yamauchi, Y.; Aogaki, R. Lifetime of ionic vacancy created in redox electrode reaction measured by cyclotron MHD electrode. Sci. Rep. 2016, 6, 19795. [Google Scholar] [CrossRef] [PubMed]
- Mogi, I.; Watanabe, K. Chiral recognition of amino acids magnetoelectrodeposited Cu film electrodes. Int. J. Electrochem. 2011, 2011, 239637. [Google Scholar] [CrossRef]
- Mogi, I.; Morimoto, R.; Aogaki, R.; Watanabe, K. Surface chirality induced by rotational electrodeposition in magnetic fields. Sci. Rep. 2013, 3, 2574. [Google Scholar] [CrossRef]
- Mogi, I.; Aogaki, R.; Watanabe, K. Chiral surface formation of copper films by magnetoelectrochemical etching. Magnetohydrodynamics 2015, 51, 361–368. [Google Scholar] [CrossRef]
- Mogi, I.; Aogaki, R.; Watanabe, K. Tailoring of surface chirality by micro-vortices and specific adsorption in magnetoelectrodeposition. Bull. Chem. Soc. Jpn. 2015, 88, 1479–1485. [Google Scholar] [CrossRef]
- Mogi, I.; Aogaki, R.; Takahashi, K. Chiral surface formation in magnetoelectrolysis on micro-electrodes. Magnetohydrodynamics 2017, 53, 321–328. [Google Scholar] [CrossRef]
- Mogi, I.; Morimoto, R.; Aogaki, R. Surface chirality effects induced by magnetic fields. Curr. Opin. Electrochem. 2018, 7, 1–6. [Google Scholar] [CrossRef]
- Mogi, I.; Aogaki, R.; Takahashi, K. Chiral symmetry breaking in magnetoelectrochemical etching with chloride additives. Molecules 2018, 23, 19. [Google Scholar] [CrossRef]
- Mogi, I.; Morimoto, R.; Aogaki, R.; Takahashi, K. Effects of vertical magnetohydrodynamic flows on chiral surface formation in magnetoelectrolysis. Magnetochemistry 2018, 4, 40. [Google Scholar] [CrossRef]
- Mogi, I.; Morimoto, R.; Aogaki, R.; Takahashi, K. Effects of vertical MHD flows and cell rotation on surface chirality in magnetoelectrodeposition. IOP Conf. Ser. Mater. Sci. Eng. 2018, 424, 012024. [Google Scholar] [CrossRef]
- Mogi, I.; Morimoto, R.; Aogaki, R.; Takahashi, K. Surface chirality in rotational magnetoelectrodeposition of copper films. Magnetochemistry 2019, 5, 53. [Google Scholar] [CrossRef]
- Mogi, I.; Iwasaka, M.; Aogaki, R.; Takahashi, K. Visualization of magnetohydrodynamic micro-vortices with guanine micro-crystals. J. Electrochem. Soc. 2017, 164, H584–H586. [Google Scholar] [CrossRef]
- Mogi, I.; Aogaki, R.; Takahashi, K. Fluctuation effects of magnetohydrodynamic micro-vortices on odd chirality in magnetoelectrolysis. Magnetochemistry 2020, 6, 43. [Google Scholar] [CrossRef]
- Mogi, I.; Aogaki, R.; Takahashi, K. Breaking of Odd Chirality in Magnetoelectrodeposition of copper film on micro-electrode. Magnetochemistry 2021, 7, 142. [Google Scholar] [CrossRef]
- Mogi, I.; Morimoto, R.; Aogaki, R.; Takahashi, K. Breaking of Odd Chirality in Magnetoelectrodeposition. Magnetochemistry 2022, 8, 67. [Google Scholar] [CrossRef]
- Miura, M.; Sugiyama, A.; Oshikiri, Y.; Morimoto, R.; Mogi, I.; Miura, M.; Takagi, S.; Kim, J.; Yamauchi, Y.; Aogaki, R. Excess heat production by the pair annihilation of ionic vacancies in copper redox reactions. Sci. Rep. 2019, 9, 13695. [Google Scholar] [CrossRef]
- Sugiyama, A.; Miura, M.; Oshikiri, Y.; Kim, Y.; Morimoto, R.; Miura, M.; Osaka, T.; Mogi, I.; Yamauchi, Y.; Aogaki, R. Excess heat production in the redox couple reaction of ferricyanide and ferrocyanide. Sci. Rep. 2020, 10, 20072. [Google Scholar] [CrossRef]
- Miura, M.; Sugiyama, A.; Oshikiri, Y.; Morimoto, R.; Mogi, I.; Miura, M.; Yamauchi, Y.; Aogaki, R. Excess heat production of the pair annihilation of ionic vacancies in a copper redox reaction using a double bipolar MHD electrode. Sci. Rep. 2024, 14, 1424. [Google Scholar] [CrossRef] [PubMed]
- Fahidy, T.Z. The effect of magnetic fields on electrochemical processes. In Modern Aspects of Electrochemistry No. 32; Conway, B.E., Bockris, J.O.M., White, R.E., Eds.; Springer: Boston, MA, USA, 2002; pp. 333–354. [Google Scholar] [CrossRef]
- Alemany, A.; Chopart, J.P. An Outline of Magnetoelectrochemistry. In Magnetohydrodynamics—Historical Evolution and Trends; Molokov, S., Moreau, R., Moffatt, K., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 391–407. [Google Scholar] [CrossRef]
- Aogaki, R.; Morimoto, R. Nonequilibrium fluctuation in micro-MHD effects on electrodeposition. In Heat and Mass Transfer—Modelling and Simulation; Hossain, M., Ed.; Intech: Rijeka, Croatia, 2011; pp. 189–216. [Google Scholar] [CrossRef]
- Monzon, L.M.A.; Coey, J.M.D. Magnetic field in electrochemistry: The Lorentz force. A mini-review. Electrochem. Commun. 2014, 42, 38–41. [Google Scholar] [CrossRef]
- Fahidy, T.Z. Wave phenomena in magnetoelectrolytic systems. Electrochim. Acta 1976, 21, 21–24. [Google Scholar] [CrossRef]
- Mohanta, S.; Fahidy, T.Z. The hydrodynamics of a magnetoelectrolytic cell. J. Appl. Electrochem. 1976, 6, 211–220. [Google Scholar] [CrossRef]
- Fahidy, T.Z. Magnetoelectrolysis. J. Appl. Electrochem. 1983, 13, 553–563. [Google Scholar] [CrossRef]
- Olivier, A.; Merienne, E.; Chopart, J.P.; Aaboubi, O. Thermoelectrochemical impedances—I. A new experimental device to measure thermoelectrical transfer functions. Electrochim. Acta 1992, 37, 1945–1950. [Google Scholar] [CrossRef]
- Aaboubi, O.; Chopart, J.P.; Douglade, J.; Olivier, A.; Gabrielli, C.; Tribollet, B. Magnetic field effects on mass transport. J. Electrochem. Soc. 1990, 137, 1796–1804. [Google Scholar] [CrossRef]
- Devos, O.; Aaboubi, O.; Chopart, J.P.; Merienne, E.; Olivier, A.R. Magnetic impedance method: The MHD transfer function. Electrochemistry 1999, 67, 180–187. [Google Scholar] [CrossRef]
- Aaboubi, O.; Amblard, J.; Chopart, J.P.; Olivier, A. Magnetohydrodynamic analysis of silver electrocrystallization from a nitric and tartaric solution. J. Electrochem. Soc. 2004, 151, C112–C118. [Google Scholar] [CrossRef]
- Aaboubi, O.; Lòs, P.; Amblard, J.; Chopart, J.P.; Olivier, A. Electrochemical investigations of the magnetic field influence on mass transport toward an ultramicrodisk. J. Electrochem. Soc. 2003, 150, E125–E130. [Google Scholar] [CrossRef]
- Devos, O.; Aaboubi, O.; Chopart, J.P.; Merienne, E.; Olivier, A.; Gabrielli, C.; Tribollet, B. A new experimental device for magnetoelectrochemical (M.E.C.) transfer function measurements. Polish J. Chem. 1997, 71, 1160–1170. [Google Scholar]
- Ragsdale, S.R.; Lee, J.; Gao, X.; White, H.S. Magnetic field effects in electrochemistry. Voltammetric reduction of acetophenone at microdisk electrodes. J. Phys. Chem. 1996, 100, 5913–5922. [Google Scholar] [CrossRef]
- Ragsdale, S.R.; Lee, J.; White, H.S. Analysis of the magnetic force generated at a hemispherical microelectrode. Anal. Chem. 1997, 69, 2070–2076. [Google Scholar] [CrossRef] [PubMed]
- Ragsdale, S.R.; Grant, K.M.; White, H.S. Electrochemically generated magnetic forces. Enhanced transport of a paramagnetic redox species in large, nonuniform magnetic fields. J. Am. Chem. Soc. 1998, 120, 13461–13468. [Google Scholar] [CrossRef]
- Mutschke, G.; Bund, A. On the 3D character of the magnetohydrodynamic effect during metal electrodeposition in cuboid cells. Electrochem. Commun. 2008, 10, 597–601. [Google Scholar] [CrossRef]
- Mühlenhoff, S.; Mutschke, G.; Koschichow, D.; Yang, X.; Bund, A.; Fröhlich, J.; Odenbach, S.; Eckert, K. Lorentz-force-driven convection during copper magnetoelectrolysis in the presence of a supporting buoyancy force. Electrochim. Acta 2012, 69, 209–219. [Google Scholar] [CrossRef]
- Devos, O.; Olivier, A.; Chopart, J.P.; Aaboubi, O.; Maurin, G. Magnetic field effects on nickel electrodeposition. J. Electrochem. Soc. 1998, 145, 401–405. [Google Scholar] [CrossRef]
- Olivas, P.; Alemany, A.; Bark, F.H. Electromagnetic control of electroplating of a cylinder in forced convection. J. Appl. Electrochem. 2004, 34, 19–30. [Google Scholar] [CrossRef]
- Daltin, A.L.; Bohr, F.; Chopart, J.P. Kinetics of Cu2O electrocrystallization under magnetic fields. Electrochim. Acta 2009, 54, 5813–5817. [Google Scholar] [CrossRef]
- Fernández, D.; Coey, J.M.D. Inhomogeneous electrodeposition of copper in a magnetic field. Electrochem. Commun. 2009, 11, 379–382. [Google Scholar] [CrossRef]
- Msellak, K.; Chopart, J.P.; Jbara, O.; Aaboubi, O.; Amblard, J. Magnetic field effect on Ni-Fe alloys codeposition. J. Magn. Magn. Mater. 2004, 281, 295–304. [Google Scholar] [CrossRef]
- Żabiński, P.R.; Mech, K.; Kowalik, R. Co-Mo and Co-Mo-C alloys deposited in a magnetic field of high intensity and their electrocatalytic properties. Arch. Metall. Mater. 2012, 57, 127–133. [Google Scholar] [CrossRef]
- Żabiński, P.R.; Franczak, K.; Kowalik, R. Electrocatalytically active Ni-Re binary alloys electrodeposited with superimposed magnetic field. Arch. Metall. Mater. 2012, 57, 495–501. [Google Scholar] [CrossRef]
- Żabiński, P.R.; Mech, K.; Kowalik, R. Electrocalalytically active Co-W and Co-W-C alloys electrodeposited in a magnetic field. Electrochim. Acta 2013, 104, 542–548. [Google Scholar] [CrossRef]
- Chouchane, S.; Levesque, A.; Żabiński, P.R.; Rehamnia, R.; Chopart, J.P. Electrochemical corrosion behavior in NaCl medium of zinc-nickel alloys electrodeposited under applied magnetic field. J. Alloys Compd. 2010, 506, 575–580. [Google Scholar] [CrossRef]
- Kishioka, S.; Yamada, A.; Aogaki, R. Analysis of gas dissolution rate into liquid phase under magnetic field gradient. Phys. Chem. Chem. Phys. 2000, 2, 4179–4183. [Google Scholar] [CrossRef]
- Devos, O.; Aogaki, R. Transport of paramagnetic liquids under nonuniform high magnetic field. Anal. Chem. 2000, 72, 2835–2840. [Google Scholar] [CrossRef]
- Sugiyama, A.; Morisaki, S.; Aogaki, R. Mass transfer process by magneto-convection at a solid-liquid interface in a heterogeneous vertical magnetic field. Jpn. J. Appl. Phys. 2003, 42, 5322–5329. [Google Scholar] [CrossRef]
- Tschulik, K.; Koza, J.A.; Uhlemann, M.; Gebert, A.; Schultz, L. Effects of well-defined magnetic field gradients on the electrodeposition of copper and bismuth. Electrochem. Commun. 2009, 11, 2241–2244. [Google Scholar] [CrossRef]
- Dunne, P.; Mazza, L.; Coey, J.M.D. Magnetic structuring of electrodeposits. Phys. Rev. Lett. 2011, 107, 024501. [Google Scholar] [CrossRef] [PubMed]
- Tschulik, K.; Yang, X.; Mutschke, G.; Uhlemann, M.; Eckert, K.; Sueptitz, R.; Schultz, L.; Gebert, A. How to obtain structural deposits from diamagnetic ions in magnetic gradient fields? Electrochem. Commun. 2011, 13, 946–950. [Google Scholar] [CrossRef]
- Tschulik, K.; Sueptitz, R.; Koza, J.; Uhlemann, M.; Mutschke, G.; Weier, T.; Gebert, A.; Schultz, L. Studies on the patterning effect of copper deposits in magnetic gradient fields. Electrochim. Acta 2010, 56, 297–304. [Google Scholar] [CrossRef]
- Tschulik, K.; Cierpka, C.; Muschke, G.; Gebert, A.; Schultz, L.; Uhlemann, M. Clarifying the mechanism of reverse structuring during electrodeposition in magnetic gradient fields. Anal. Chem. 2012, 84, 2328–2334. [Google Scholar] [CrossRef] [PubMed]
- Aogaki, R.; Fueki, K.; Mukaibo, T. Application of magnetohydrodynamic effect to the analysis of electrochemical reactions—1. MHD flow of an electrolyte solution in an electrode-cell with a short rectangular channel. Denki Kagaku (Present. Electrochem.) 1975, 43, 504–508. [Google Scholar] [CrossRef]
- Aogaki, R.; Fueki, K.; Mukaibo, T. Application of magnetohydrodynamic effect to the analysis of electrochemical reactions—2. Diffusion process in MHD forced flow of electrolyte solutions. Denki Kagaku (Present. Electrochem.) 1975, 43, 509–514. [Google Scholar] [CrossRef]
- Aogaki, R.; Fueki, K.; Mukaibo, T. Diffusion process in viscous-flow of electrolyte solution in magnetohydrodynamic pump electrodes. Denki Kagaku (Present. Electrochem.) 1976, 44, 89–94. [Google Scholar] [CrossRef]
- Salinas, G.; Tieriekhov, K.; Garrigue, P.; Sojic, N.; Bouffier, L.; Kuhn, A. Lorentz Force-Driven Autonomous Janus Swimmers. J. Am. Chem. Soc. 2021, 143, 12708–12714. [Google Scholar] [CrossRef]
- Salinas, G.; Kuhn, A.; Arnaboldi, S. Self-Sustained Rotation of Lorentz Force-Driven Janus Systems. J. Phys. Chem. C 2023, 127, 14704–14710. [Google Scholar] [CrossRef]
- Tieriekhov, K.; Sojic, N.; Bouffier, L.; Salinas, G.; Kuhn, A. Wireless Magnetoelectrochemical Induction of Rotational Motion. Adv. Sci. 2024, 11, 2306635. [Google Scholar] [CrossRef] [PubMed]
- Zharov, A.; Fierro, V.; Celzard, A. Magnetohydrodynamic self-propulsion of active matter agents. Appl. Phys. Lett. 2020, 117, 104101. [Google Scholar] [CrossRef]
- Anderson, E.C.; Weston, M.C.; Fritsch, I. Investigations of Redox Magnetohydrodynamic Fluid Flow at Microelectrode Arrays Using Microbeads. Anal. Chem. 2010, 82, 2643–2651. [Google Scholar] [CrossRef] [PubMed]
- Sikes, J.C.; Wonner, K.; Nicholson, A.; Cignoni, P.; Fritsch, I.; Tschulik, K. Characterization of Nanoparticles in Diverse Mixtures Using Localized Surface Plasmon Resonance and Nanoparticle Tracking by Dark-Field Microscopy with Redox Magnetohydrodynamics Microfluidics. ACS Phys. Chem. Au 2022, 2, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Aogaki, R.; Kitazawa, K.; Kose, Y.; Fueki, K. Theory of powdered crystal formation in electrocrystallization-Occurrence of morphological instability at the electrode surface. Electrochim. Acta 1980, 25, 965–972. [Google Scholar] [CrossRef]
- Aogaki, R.; Makino, T. Theory of powdered metal formation in electrochemistry-Morphological instability in galvanostatic crystal growth under diffusion control. Electrochim. Acta 1981, 26, 1509–1517. [Google Scholar] [CrossRef]
- Aogaki, R. Instability of nonequilibrium fluctuation in electrochemical nucleation. 1. Occurrence of instability. J. Chem. Phys. 1995, 103, 8602–8615. [Google Scholar] [CrossRef]
- Morimoto, R.; Miura, M.; Sugiyama, A.; Miura, M.; Oshikiri, Y.; Mogi, I.; Takagi, S.; Yamauchi, Y.; Aogaki, R. Theory of microscopic electrodeposition under a uniform parallel magnetic field-1. Nonequilibrium fluctuations of magnetohydrodynamic (MHD) flow. J. Electroanal. Chem. 2019, 848, 113254. [Google Scholar] [CrossRef]
- Morimoto, R.; Miura, M.; Sugiyama, A.; Miura, M.; Oshikiri, Y.; Mogi, I.; Takagi, S.; Yamauchi, Y.; Aogaki, R. Theory of microscopic electrodeposition under a uniform parallel magnetic field-2. Suppression of 3D nucleation by micro-MHD flow. J. Electroanal. Chem. 2019, 847, 113255. [Google Scholar] [CrossRef]
- Morimoto, R.; Miura, M.; Sugiyama, A.; Miura, M.; Oshikiri, Y.; Kim, Y.; Mogi, I.; Takagi, S.; Yamauchi, Y.; Aogaki, R. Long-term Electrodeposition under a uniform parallel magnetic field. 1. Instability of two-dimensional nucleation in an electric double layer. J. Phys. Chem. B 2020, 124, 11854–11869. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, R.; Miura, M.; Sugiyama, A.; Miura, M.; Oshikiri, Y.; Kim, Y.; Mogi, I.; Takagi, S.; Yamauchi, Y.; Aogaki, R. Long-term Electrodeposition under a uniform parallel magnetic field. 2. Flow-mode transition from laminar flow to convection cells with two-dimensional (2D) nucleation. J. Phys. Chem. B 2020, 124, 11870–11881. [Google Scholar] [CrossRef] [PubMed]
- Aogaki, R.; Makino, T. Morphological instability in nonsteady galvanostatic electrodeposition 1. Effect of surface diffusion of adatoms. J. Electrochem. Soc. 1984, 131, 40–46. [Google Scholar] [CrossRef]
- Yanson, Y.I.; Rost, M.J. Structural accelerating effect of chloride on copper electrodeposition. Angew. Chem. Int. Ed. 2013, 52, 2454–2458. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morimoto, R.; Miura, M.; Sugiyama, A.; Miura, M.; Oshikiri, Y.; Mogi, I.; Yamauchi, Y.; Aogaki, R. Theory of Chiral Electrodeposition by Micro-Nano-Vortexes under a Vertical Magnetic Field-2: Chiral Three-Dimensional (3D) Nucleation by Nano-Vortexes. Magnetochemistry 2024, 10, 25. https://doi.org/10.3390/magnetochemistry10040025
Morimoto R, Miura M, Sugiyama A, Miura M, Oshikiri Y, Mogi I, Yamauchi Y, Aogaki R. Theory of Chiral Electrodeposition by Micro-Nano-Vortexes under a Vertical Magnetic Field-2: Chiral Three-Dimensional (3D) Nucleation by Nano-Vortexes. Magnetochemistry. 2024; 10(4):25. https://doi.org/10.3390/magnetochemistry10040025
Chicago/Turabian StyleMorimoto, Ryoichi, Miki Miura, Atsushi Sugiyama, Makoto Miura, Yoshinobu Oshikiri, Iwao Mogi, Yusuke Yamauchi, and Ryoichi Aogaki. 2024. "Theory of Chiral Electrodeposition by Micro-Nano-Vortexes under a Vertical Magnetic Field-2: Chiral Three-Dimensional (3D) Nucleation by Nano-Vortexes" Magnetochemistry 10, no. 4: 25. https://doi.org/10.3390/magnetochemistry10040025
APA StyleMorimoto, R., Miura, M., Sugiyama, A., Miura, M., Oshikiri, Y., Mogi, I., Yamauchi, Y., & Aogaki, R. (2024). Theory of Chiral Electrodeposition by Micro-Nano-Vortexes under a Vertical Magnetic Field-2: Chiral Three-Dimensional (3D) Nucleation by Nano-Vortexes. Magnetochemistry, 10(4), 25. https://doi.org/10.3390/magnetochemistry10040025