Metal Micronutrient and Silicon Concentration Effects on Growth and Susceptibility to Pythium Root Rot for Hydroponic Lettuce (Lactuca sativa)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pythium Culture and Inoculum Preparation
2.2. Plant Culture
2.3. Experiment #1: Effects of Metal Micronutrient Concentration
2.4. Experiment #2: Effects of Silicon Concentration
2.5. Statistical Analysis
3. Results and Discussion
3.1. Metal Micronutrient Concentration Effects on Leaf SPAD, Canopy Dimensions and Plant Growth
3.2. Silicon Concentration Effects on Leaf SPAD, Canopy Dimensions and Plant Growth
3.3. Metal Micronutrient and Silicon Concentration Effects on Percent Root Disease
3.4. General Discussion of Major Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gillespie, D.P.; Kubota, C.; Miller, S.A. Effects of low pH of hydroponic nutrient solution on plant growth, nutrient uptake, and root rot disease incidence of basil (Ocimum basilicum L.). HortScience 2020, 55, 1251–1258. [Google Scholar] [CrossRef]
- McGehee, C.S.; Raudales, R.E. Pathogenicity and mefenoxam sensitivity of Pythium, Globisporangium, and Fusarium isolates from coconut coir and rockwool in marijuana (Cannabis sativa L.) production. Front. Agron. 2021, 3, 706138. [Google Scholar] [CrossRef]
- Sutton, J.; Sopher, C.R.; Going, N.; Liu, W.; Grodzinski, B.; Hall, J.; Benchimol, R. Etiology and epidemiology of Pythium root rot in hydroponic crops: Current knowledge and perspectives. Summa Phytopathol. 2006, 32, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Resh, H.M. Hydroponic Food Production, a Definitive Guidebook for the Advanced Home Gardener and the Commercial 546 Hydroponic Grower, 6th ed.; Woodbridge Press Publishing: Santa Barbara, CA, USA, 2013. [Google Scholar]
- Raudales, R.E.; Parke, J.L.; Guy, C.L.; Fisher, P.R. Control of waterborne microbes in irrigation: A review. Agric. Water Manag. 2014, 143, 9–28. [Google Scholar] [CrossRef]
- Duffy, B.K.; Défago, G. Macro-and microelement fertilizers influence the severity of Fusarium crown and root rot of tomato in a soilless production system. HortScience 1999, 34, 287–291. [Google Scholar] [CrossRef] [Green Version]
- Langenfeld, N.J.; Pinto, D.F.; Faust, J.E.; Heins, R.; Bugbee, B. Principles of nutrient and water management 533 for indoor agriculture. Sustainability 2022, 14, 10204. [Google Scholar] [CrossRef]
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Fischer, R.; Fisher, P.; Frances, A. Water treatment with copper ionization. In Water Treatment for Pathogen and Algae; Fisher, P.R., Ed.; GMPro Magazine and the Water Education Alliance for Horticulture; U.S. Department of Agriculture: Washington, DC, USA, 2009; pp. 43–46. [Google Scholar]
- Bugbee, B. Nutrient management in recirculating hydroponic culture. Acta Hortic. 2004, 648, 99–122. [Google Scholar] [CrossRef] [Green Version]
- Chérif, M.; Bélanger, R.R. Use of potassium silicate amendments in recirculating nutrient solutions to suppress Pythium ultimum on long English cucumber. Plant Dis. 1992, 76, 1008–1011. [Google Scholar] [CrossRef]
- Chérif, M.; Menzies, J.G.; Ehret, D.L.; Bogdanoff, C.; Bélanger, R.R. Yield of cucumber infected with Pythium aphanidermatum when grown with soluble silicon. Hortic. Sci. 1994, 29, 896–897. [Google Scholar] [CrossRef]
- Bélanger, R.R.; Bowen, P.A.; Ehret, D.L.; Menzies, J.G. Soluble silicon: Its role in crop and disease management of greenhouse crops. Plant Dis. 1995, 79, 329–336. [Google Scholar] [CrossRef]
- Voogt, W.; Sonneveld, C. Silicon in horticultural crops grown in soilless culture. In Silicon in Agriculture; Datnoff, L.E., Snyder, G.H., Korndörfer, G.H., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2001; pp. 115–129. [Google Scholar]
- Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- McGehee, C.S.; Apicella, P.; Raudales, R.; Berkowitz, G.; Ma, Y.; Durocher, S.; Lubell, J. First report of root rot and wilt caused by Pythium myriotylum on hemp (Cannabis sativa) in the United States. Plant Dis. 2019, 103, 3288. [Google Scholar] [CrossRef]
- Helms, K.M. Micronutrient Concentration Effects on Lettuce Growth and Susceptibility to Pythium. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2022. [Google Scholar]
- Uddling, J.; Gelang-Alfredsson, J.; Piikki, K.; Pleijel, H. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 2007, 91, 37–46. [Google Scholar] [CrossRef]
- Chiang, K.S.; Liu, H.I.; Bock, C.H. A discussion on disease severity index values. Part I: Warning on inherent errors and suggestions to maximize accuracy. Ann. Appl. Biol. 2017, 171, 139–154. [Google Scholar] [CrossRef]
- Mattson, N. Pythium root rot on hydroponically grown basil and spinach. e-GRO Edibles Alert 2018, 3, E301. [Google Scholar]
- Raudales, R.; McGehee, C. Pythium root rot on hydroponic lettuce. e-Gro Edible Alert 2016, 1, E104. [Google Scholar]
- Frantz, J.M.; Khandekar, S.; Leisner, S. Silicon differentially influences copper toxicity response in silicon-accumulator and non-accumulator species. J. Am. Soc. Hortic. Sci. 2011, 136, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Bryson, G.M.; Mills, H.A.; Sasseville, D.N.; Jones, B.J.; Barker, A.V. Plant Analysis Handbook, 4th ed.; Micro-Macro Publishing, Inc.: Athens, GA, USA, 2014. [Google Scholar]
- Kamenidou, S.; Cavins, T.J.; Marek, S.M. Silicon supplements affect horticultural traits of greenhouse-produced ornamental sunflowers. HortScience 2008, 43, 236–239. [Google Scholar] [CrossRef] [Green Version]
- Mattson, N.; Leatherwood, W.R. Potassium silicate drenches increase leaf silicon content and affect morphological traits of several floriculture crops grown in a peat-based substrate. HortScience 2010, 45, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Tebow, J.B.; Houston, L.L.; Dickson, R.W. Silicon foliar spray and substrate drench effects on plant growth, morphology, and resistance to wilting with container-grown edible species. Horticulturae 2021, 7, 263. [Google Scholar] [CrossRef]
- Epstein, E. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 641–646. [Google Scholar] [CrossRef]
- Heine, G.; Tikum, G.; Horst, W.J. The effect of silicon on the infection by and spread of Pythium aphanidermatum in single roots of tomato and bitter gourd. J. Exp. Bot. 2007, 58, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr. 2004, 50, 11–18. [Google Scholar] [CrossRef]
- Fauteux, F.; Remus-Borel, W.; Menzies, J.G.; Belanger, R.R. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol. Lett. 2005, 249, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zellner, W.; Frantz, J.; Leisner, S. Silicon delays tobacco ringspot virus systemic symptoms in Nicotiana tabacum. J. Plant Physiol. 2011, 168, 1866–1869. [Google Scholar] [CrossRef]
- Stamatakis, A.; Papadantonakis, N.; Savvas, D. Effects of silicon and salinity on fruit yield and quality of tomato grown hydroponically. Acta Hort. 2003, 609, 141–147. [Google Scholar] [CrossRef]
- Ghareed, H.; Bozso, Z.; Ott, P.G.; Repenning, C.; Stahl, F.; Wydra, K. Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiol. Mol. Plant Pathol. 2011, 75, 83–89. [Google Scholar] [CrossRef]
- Sonneveld, C.; Straver, N. Nutrient solutions for vegetables and flowers grown in water or substrates. Voedingspolossingen Glastijnbouw 1994, 8, 33. [Google Scholar]
- Van der Lugt, G. Nutrient Solutions for Greenhouse Crops. Available online: www.geertenvanderlugt.nl (accessed on 1 April 2022).
- Fatzinger, B.; Bugbee, B. pH 11.3 Enhances the Solubility of Potassium Silicate for Liquid Fertilizer. Nutrients. 2021. Available online: https://digitalcommons.usu.edu/cpl_nutrients/9 (accessed on 6 April 2023).
Leaf SPAD Chlorophyll Content | ||||||||
---|---|---|---|---|---|---|---|---|
Cu | Fe | Mn | Zn | |||||
No Pythium | Pythium | No Pythium | Pythium | No Pythium | Pythium | No Pythium | Pythium | |
0.0 mg·L−1 | 27.4 a | 28.9 a | 25.3 b | 25.2 b | 27.1 a | 25.8 b | 30.0 a | 29.0 a |
Control x | 27.2 a | 28.2 a | 27.2 a | 28.2 a | 27.2 a | 28.2 a | 27.2 a | 28.2 a |
2.5 mg·L−1 | 27.0 a | 27.6 a | 26.6 a | 29.2 a | 26.8 a | 27.2 a | 26.5 a | 26.2 a |
5.0 mg·L−1 | 26.4 a | 27.1 a | 28.5 a | 28.3 a | 28.1 a | 25.7 a | 27.3 a | 28.6 a |
10.0 mg·L−1 | 28.2 a | 28.0 a | 27.6 a | 28.1 a | 28.2 a | 27.0 a | 27.2 a | 28.3 a |
No Pythium | 27.2 a | 27.0 a | 27.5 a | 27.6 a | ||||
Pythium | 28.0 a | 27.8 a | 26.8 a | 28.1 a | ||||
Concentration | 0.0634 | 0.0281 | 0.0322 | 0.2266 | ||||
Pythium | 0.0472 | <0.0001 | 0.0637 | <0.0001 | ||||
Conc. * Pythium | 0.6034 | 0.2593 | 0.0024 | 0.1723 |
Canopy Width (cm) | ||||||||
---|---|---|---|---|---|---|---|---|
Cu | Fe | Mn | Zn | |||||
No Pythium | Pythium | No Pythium | Pythium | No Pythium | Pythium | No Pythium | Pythium | |
0.0 mg·L−1 | 22.4 a | 22.1 ab | 21.7 a | 19.8 b | 22.3 a | 21.4 a | 18.2 b | 18.3 b |
Control x | 22.5 a | 22.2 ab | 22.5 a | 22.2 a | 22.5 a | 22.2 a | 22.5 a | 22.2 a |
2.5 mg·L−1 | 22.7 a | 22.7 ab | 22.4 a | 21.0 ab | 22.7 a | 20.5 a | 20.8 a | 24.3 a |
5.0 mg·L−1 | 22.6 a | 23.6 a | 22.9 a | 21.3 ab | 23.3 a | 21.6 a | 22.0 a | 21.3 b |
10.0 mg·L−1 | 20.4 b | 21.5 b | 20.6 b | 21.7 ab | 22.0 a | 21.2 a | 21.7 a | 21.7 b |
No Pythium | 22.1 a | 22.0 a | 22.6 a | 21.0 a | ||||
Pythium | 22.4 a | 21.2 b | 21.4 b | 21.6 a | ||||
Concentration | 0.0011 | 0.0275 | 0.2507 | <0.0001 | ||||
Pythium | 0.8215 | 0.0113 | 0.0002 | 0.2614 | ||||
Conc. * Pythium | 0.3059 | 0.0275 | 0.2447 | 0.0562 |
Total Fresh Mass per Plant (g) | ||||||||
---|---|---|---|---|---|---|---|---|
Cu | Fe | Mn | Zn | |||||
No Pythium | Pythium | No Pythium | Pythium | No Pythium | Pythium | No Pythium | Pythium | |
0.0 mg·L−1 | 90.9 a | 68.6 ab | 66.6 b | 52.3 b | 86.6 a | 79.5 a | 59.8 b | 54.4 b |
Control x | 87.7 a | 78.2 a | 87.7 a | 78.2 a | 87.7 a | 78.2 a | 87.7 a | 78.2 a |
2.5 mg·L−1 | 81.3 ab | 72.0 ab | 76.1 ab | 66.8 ab | 81.1 a | 68.7 ab | 82.2 a | 82.1 a |
5.0 mg·L−1 | 73 b | 71.5 ab | 89.1 a | 67.6 ab | 84.7 a | 69.9 ab | 88.7 a | 68.0 ab |
10.0 mg·L−1 | 72.1 b | 66.1 b | 76.6 ab | 72.0 ab | 73.2 b | 57.2 b | 88.7 a | 61.9 b |
No Pythium | 81.0 a | 79.2 a | 82.7 a | 81.4 a | ||||
Pythium | 71.3 b | 67.4 b | 69.1 b | 68.9 b | ||||
Concentration | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||||
Pythium | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||||
Conc. * Pythium | 0.0325 | 0.1661 | 0.3544 | 0.0118 |
Total Dry Mass per Plant (g) | ||||||||
---|---|---|---|---|---|---|---|---|
Cu | Fe | Mn | Zn | |||||
No Pythium | Pythium | No Pythium | Pythium | No Pythium | Pythium | No Pythium | Pythium | |
0.0 mg·L−1 | 4.94 a | 4.45 ab | 4.14 b | 3.87 b | 4.63 a | 4.62 a | 3.88 b | 3.80 b |
Control x | 4.76 a | 4.70 a | 4.76 a | 4.70 a | 4.76 a | 4.70 a | 4.76 a | 4.70 a |
2.5 mg·L−1 | 4.31 b | 4.21 b | 4.23 ab | 4.42 ab | 4.58 a | 4.51 a | 4.52 a | 4.51 ab |
5.0 mg·L−1 | 4.16 b | 4.24 b | 4.29 ab | 4.39 ab | 4.49 a | 4.42 ab | 4.68 a | 4.31 ab |
10.0 mg·L−1 | 4.28 b | 4.23 b | 4.35 ab | 4.46 ab | 4.46 a | 4.03 b | 4.90 a | 4.26 ab |
No Pythium | 4.49 a | 4.52 a | 4.81 a | 4.67 a | ||||
Pythium | 4.37 b | 4.31 b | 4.34 b | 4.32 b | ||||
Concentration | 0.2277 | 0.1004 | 0.0014 | 0.0064 | ||||
Pythium | 0.0001 | 0.0020 | 0.0150 | <0.0001 | ||||
Conc. * Pythium | 0.5163 | 0.0336 | 0.0382 | 0.0658 |
Leaf SPAD Chlorophyll Content | Canopy Width (cm) | Total Fresh Mass per Plant (g) | Total Dry Mass per Plant (g) | |||||
---|---|---|---|---|---|---|---|---|
No Pythium | Pythium | No Pythium | Pythium | No Pythium | Pythium | No Pythium | Pythium | |
Control (0 mg·L−1) | 27.2 a | 28.2 a | 22.5 a | 22.2 a | 87.7 a | 78.2 a | 4.77 a | 4.70 a |
7 mg·L−1 | 26.9 a | 27.7 a | 21.6 a | 23.3 a | 86.3 a | 75.5 a | 4.73 a | 5.08 a |
14 mg·L−1 | 26.2 a | 28.6 a | 22.2 a | 21.7 a | 82.1 b | 70.6 ab | 4.60 a | 4.48 a |
28 mg·L−1 | 27.1 a | 27.4 a | 22.3 a | 22.9 a | 82.3 b | 67.5 b | 4.81 a | 4.30 a |
56 mg·L−1 | 27.4 a | 30.0 a | 22.4 a | 20.8 b | 83.8 b | 67.6 b | 4.95 a | 5.04 a |
No Pythium | 27.0 a | 22.2 a | 84.4 a | 4.77 a | ||||
Pythium | 28.4 a | 22.2 a | 71.9 b | 4.72 a | ||||
Concentration | 0.1015 | 0.0211 | <0.0001 | 0.6872 | ||||
Pythium | 0.2561 | 0.2520 | 0.0396 | 0.1279 | ||||
Conc. * Pythium | 0.4094 | 0.3965 | 0.8232 | 0.3477 |
Percent Disease Severity | ||||
---|---|---|---|---|
Concentration | Cu | Fe | Mn | Zn |
0.0 mg·L−1 | 36.5% | 33.8% | 13.1% | 16.3% |
Control x | 24.2% | 24.2% | 24.2% | 24.2% |
2.5 mg·L−1 | 12.6% | 27.7% | 29.0% | 10.1% |
5.0 mg·L−1 | 12.5% | 24.2% | 27.4% | 29.2% |
10.0 mg·L−1 | 6.3% | 23.4% | 18.8% | 34.4% |
p-value | 0.0321 | 0.8702 | 0.3877 | 0.1804 |
±Std. Error | 7.1% | 11.8% | 7.2% | 7.8% |
Concentration | Si | |||
Control (0 mg·L−1) | 24.2% | |||
7 mg·L−1 | 25.4% | |||
14 mg·L−1 | 28.0% | |||
28 mg·L−1 | 26.4% | |||
56 mg·L−1 | 20.2% | |||
p-value | 0.9647 | |||
±Std. Error | 11.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helms, K.M.; Dickson, R.W.; Bertucci, M.B.; Rojas, A.A.; Gibson, K.E. Metal Micronutrient and Silicon Concentration Effects on Growth and Susceptibility to Pythium Root Rot for Hydroponic Lettuce (Lactuca sativa). Horticulturae 2023, 9, 670. https://doi.org/10.3390/horticulturae9060670
Helms KM, Dickson RW, Bertucci MB, Rojas AA, Gibson KE. Metal Micronutrient and Silicon Concentration Effects on Growth and Susceptibility to Pythium Root Rot for Hydroponic Lettuce (Lactuca sativa). Horticulturae. 2023; 9(6):670. https://doi.org/10.3390/horticulturae9060670
Chicago/Turabian StyleHelms, Kalyn M., Ryan W. Dickson, Matthew B. Bertucci, Alejandro A. Rojas, and Kristen E. Gibson. 2023. "Metal Micronutrient and Silicon Concentration Effects on Growth and Susceptibility to Pythium Root Rot for Hydroponic Lettuce (Lactuca sativa)" Horticulturae 9, no. 6: 670. https://doi.org/10.3390/horticulturae9060670
APA StyleHelms, K. M., Dickson, R. W., Bertucci, M. B., Rojas, A. A., & Gibson, K. E. (2023). Metal Micronutrient and Silicon Concentration Effects on Growth and Susceptibility to Pythium Root Rot for Hydroponic Lettuce (Lactuca sativa). Horticulturae, 9(6), 670. https://doi.org/10.3390/horticulturae9060670