Paulownia spp.: A Bibliometric Trend Analysis of a Global Multi-Use Tree
Abstract
:1. Introduction
2. Data and Methods
2.1. Web of Science
2.2. Data Collection and Analysis
2.3. VOSviewer
3. Results
3.1. Document Type and Language of Publication
3.2. Publication Output
3.3. Web of Science Categories and Research Areas
3.4. Core Journals
3.5. Authors’ Co-Authorship Analysis
3.6. Countries/Regions Co-Authorship Analysis
3.7. Affiliations Co-Authorship Analysis
3.8. All Keywords Co-Occurrence Analysis
4. Discussion
5. Conclusions
- A total of 820 scientific documents in the field of Paulownia spp. covering all the scientific fields and disciplines were retrieved from 1971 to 2021. The temporal trend analysis did exhibit a limited and fairly constant production until 2004, with several publications almost always under 10 per year, while in 2008, a peak was recorded with 28 articles. After this year, with a few minor exceptions, annual article publications increased steadily and considerably until 2020, with over 60 articles.
- The main Paulownia species studied in this article were, in descending order, P. tomentosa (52%), P. fortunei (24%), and P. elongata (16%).
- The principal WoS categories were Plant Sciences; Forestry, Materials Science, Paper and Wood; and Environmental Sciences, which cover more than 55% of the articles. However, four more innovative categories, Biochemistry Molecular Biology, Biotechnology Applied Microbiology, Chemistry and Chemistry Medicinal, were over 5% of the total articles., With their different approaches, the research areas somehow show results comparable to the WoS categories.
- The People’s Republic of China, with its institutions, was the predominant country in publishing those documents, followed by the USA, Spain, Japan, and South Korea. The 66 countries co-authorship network of Paulownia spp. was divided into 10 clusters, with these five countries acting as leaders of the main clusters.
- There were no preferred articles for a few specific journals. The articles were published in 460 journals, given the broad range of applications and interests of Paulownia spp. The leading nine journals with at least 1% of the publications were reaching less than 15% of the total publications.
- The first ten authors in terms of articles were almost all from institutions in the People’s Republic of China, except for no. 7, from the USA, and no. 10 from the Czech Republic.
- Among the 22 most productive research institutions with over 10 papers, 8 are from the People’s Republic of China, 5 from the USA, 3 from Spain, 2 from Bulgaria, and only 1 from Serbia, the Czech Republic, Turkey, and Iran. That is coherent with the author and country rankings.
- As expected, keyword analyses show that the most recent sectors of study concern both emerging technologies, such as genomics, and economically strategic sectors, such as renewable energy and biochar. Meanwhile, the older ones concerned, for example, classification, chemistry, and timber.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, P.; Lou, G.; Cai, X.; Zhang, B.; Cheng, Y.; Wang, H. Comparison of the complete plastomes and the phylogenetic analysis of Paulownia species. Sci. Rep. 2020, 10, 2225. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.H.; Chao, C.J.; Lu, X.Y.; Xiong, Y.G. Paulownia in China: Cultivation and Utilization; Asian Network for Biological Sciences and International Development Research Centre: Singapore, 1986; pp. 1–65. [Google Scholar]
- Essl, F. From ornamental to detrimental? The incipient invasion of Central Europe by Paulownia tomentosa. Preslia 2007, 79, 377–389. [Google Scholar]
- Hall, T. Paulownia: An agroforestry gem. Trees Life J. 2008, 3, 3. Available online: http://www.TFLJournal.org/article.php/20080418100402327 (accessed on 29 August 2023).
- Snow, W.A. Ornamental, crop, or invasive? The history of the Empress tree (Paulownia) in the USA. For. Trees Livelihoods 2015, 24, 85–96. [Google Scholar] [CrossRef]
- Burger, D.W. Empress Tree (Paulownia tomentosa Steud.). In Biotechnology in Agriculture and Forestry Trees II; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1989; Volume 5, Chapter 18; pp. 359–369. [Google Scholar] [CrossRef]
- Gillard, M. Paulownia: Invasive or Not? An Analysis of the Invasive Properties of Paulownia tomentosa, Elongate and Fortunei. World Tree. 2020. Available online: https://www.worldtree.eco/paulownia-and-invasiveness/ (accessed on 29 August 2023).
- Beckjord, P.R. Paulownia tomentosa: A Brief Guide for the Tree Farmer; Miscellaneous Publication No. 984; Maryland Agricultural Experiment Station. [Contribution No. 6648 of the Maryland Agricultural Experiment Station]; University of Maryland: College Park, MD, USA, 1984; p. 13. [Google Scholar]
- Bonner, F.T. Paulownia tomentosa (Thunb.) Sieb. & Zucc. ex Steud. royal paulownia. In Technical Coordinators. Silvics of North America. Volume 2. Hardwoods; Agriculture Handbook 654; Burns, R.M., Honkala, B.H., Eds.; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990; pp. 501–502. [Google Scholar]
- Grime, J.P. Shade tolerance in flowering plants. Nature 1965, 28, 161–163. [Google Scholar] [CrossRef]
- Neel, A. Effects of Fire and Invasive Paulownia tomentosa on Native Tree Regeneration in Southern Ohio after Two Years. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2012. [Google Scholar]
- Kuppinger, D.M. Post-Fire Vegetation Dynamics and the Invasion of Paulownia tomentosa in the Southern Appalachians. PhD Thesis, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 2008; p. 210. [Google Scholar]
- Lee, J.W.; Seo, K.H.; Ryu, H.W.; Yuk, H.J.; Park, H.A.; Lim, Y.; Ahn, K.S.; Oh, S.R. Anti-inflammatory effect of stem bark of Paulownia tomentosa Steud. in lipopolysaccharide (LPS)-stimulated RAW264. 7 macrophages and LPS-induced murine model of acute lung injury. J. Ethnopharmacol. 2018, 210, 23–30. [Google Scholar] [CrossRef]
- Móricz, Á.M.; Ott, P.G.; Knaś, M.; Długosz, E.; Krüzselyi, D.; Kowalska, T.; Sajewicz, M. Antibacterial potential of the phenolics extracted from the Paulownia tomentosa L. leaves as studied with use of high-performance thin-layer chromatography combined with direct bioautography. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 282–289. [Google Scholar] [CrossRef]
- Zhang, J.K.; Li, M.; Li, M.; Du, K.; Lv, J.; Zhang, Z.G.; Zheng, X.K.; Feng, W.S. Four C-geranyl flavonoids from the flowers of Paulownia fortunei and their anti-inflammatory activity. Nat. Prod. Res. 2020, 34, 3189–3198. [Google Scholar] [CrossRef]
- Adach, W.; Żuchowski, J.; Moniuszko-Szajwaj, B.; Szumacher-Strabel, M.; Stochmal, A.; Olas, B.; Cieslak, A. In vitro antiplatelet activity of extract and its fractions of Paulownia Clone in Vitro 112 leaves. Biomed. Pharmacother. 2021, 137. [Google Scholar] [CrossRef]
- Siebold, P.F.; Zuccarini, J.G. Flora Japonica 1; Lugduni Batavorum: Leiden, The Netherlands, 1835. [Google Scholar]
- Ates, S.; Ni, Y.; Akgul, M.; Tozluoglu, A. Characterization and evaluation of Paulownia elongota as a raw material for paper production. Afr. J. Biotechnol. 2008, 7, 4153–4158. [Google Scholar]
- Kaymakci, A.; Bektas, I.; Bal, B. Some mechanical properties of paulownia (Paulownia elongata) wood. In W: International Caucasian Forestry Symposium; Artvin University Ed.: Artvin, Turkey, 2013; pp. 917–920. [Google Scholar]
- Paulownia tomentosa Records. Available online: https://www.monumentaltrees.com/en/trees/paulowniatomentosa/records/ (accessed on 29 August 2023).
- Akyildiz, M.H.; Kol Sahin, H. Some technological properties and uses of paulownia (Paulownia tomentosa Steud.) wood. J. Environ. Biol. 2010, 31, 351–355. [Google Scholar] [PubMed]
- Jiménez, L.; Rodríguez, A.; Ferrer, J.L.; Pérez, A.; Angulo, V. Paulownia, a fast-growing plant, as a raw material for paper manufacturing. Afinidad 2005, 62, 100–105. [Google Scholar]
- López, F.; Pérez, A.; Zamudio, M.A.; De Alva, H.E.; García, J.C. Paulownia as raw material for solid biofuel and cellulose pulp. Biomass Bioenergy 2012, 45, 77–86. [Google Scholar] [CrossRef]
- Jakubowski, M. Cultivation potential and uses of Paulownia wood: A review. Forests 2022, 13, 668–683. [Google Scholar] [CrossRef]
- Sticher, O.; Lahloub, M.F. Phenolic glycosides of Paulownia tomentosa bark. Planta Medica 1982, 46, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Roloff, A.; Gillner, S.; Kniesel, R.; Zhang, D. Interesting and new street tree species for European cities. J. For. Landsc. Res. 2018, 3, 1–7. [Google Scholar] [CrossRef]
- Icka, P.; Damo, R.; Icka, E. Paulownia tomentosa, a fast growing timber. Ann. Valahia Univ. Targoviste Agric. 2016, 10, 14–19. [Google Scholar] [CrossRef]
- Domínguez, E.; Romaní, A.; Domingues, L.; Garrote, G. Evaluation of strategiesfor second generation bioethanol production from fast growing biomass Paulownia within a biorefinery scheme. Appl. Energy 2017, 187, 777–789. [Google Scholar] [CrossRef]
- Świechowski, K.; Stegenta-Dąbrowska, S.; Liszewski, M.; Bąbelewski, P.; Koziel, J.A.; Białowiec, A. Oxytree pruned biomass torrefaction: Process kinetics. Materials 2019, 12, 3334. [Google Scholar] [CrossRef]
- Pablo, G.; Domínguez, V.D.; Domínguez, E.; Gullón, P.; Gullón, B.; Garrote, G.; Romaní, A. Comparative study of biorefinery processes for the valorization of fast-growing Paulownia wood. Bioresour. Technol. 2020, 314, 123722. [Google Scholar] [CrossRef]
- Alagawany, M.; Farag, M.R.; Sahfi, M.E.; Elnesr, S.S.; Alqaisi, O.; El-Kassas, S.; Al-Wajeeh, A.S.; Taha, A.E.; Abd E-Hack, M.E. Phytochemical characteristics of Paulownia trees wastes and its use as unconventional feedstuff in animal feed. Anim. Biotechnol. 2022, 33, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Stewart, W.M.; Vaidya, B.N.; Mahapatra, A.K.; Terrill, T.H.; Joshee, N. Potential use of multipurpose Paulownia elongata tree as an animal feed resource. Am. J. Plant Sci. 2018, 9, 1212. [Google Scholar] [CrossRef]
- Rodríguez-Seoane, P.; del Pozo, C.; Puy, N.; Bartrolí, J.; Domínguez, H. Hydrothermal extraction of valuable components from leaves and petioles from Paulownia elongata x fortunei. Waste Biomass Valoriz. 2021, 12, 4525–4535. [Google Scholar] [CrossRef]
- Madejón, P.; Domínguez, M.T.; Díaz, M.J.; Madejón, E. Improving sustainability in the remediation of contaminated soils by the use of compost and energy valorization by Paulownia fortunei. Sci. Total Environ. 2016, 539, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Macci, C.; Peruzzi, E.; Doni, S.; Masciandaro, G. Monitoring of a long term phytoremediation process of a soil contaminated by heavy metals and hydrocarbons in Tuscany. Environ. Sci. Pollut. Res. Res. 2020, 27, 424–437. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, W.H.; Zhang, C.B.; Ke, S.S. Physiological responses and detoxific mechanisms to Pb, Zn, Cu and Cd in young seedlings of Paulownia fortunei. J. Environ. Sci. 2010, 22, 1916–1922. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Wang, B.; McGrouther, K.; Wang, H.; Ma, T.; Qiao, J.; Wu, L. Soil quality assessment under different Paulownia fortunei plantations in mid-subtropical China. J. Soils Sediments 2017, 17, 2371–2382. [Google Scholar] [CrossRef]
- Fernandez-Puratich, H.; Oliver-Villanueva, J.V.; Lerma-Arce, V.; García, M.D.; Raigón, M.D. A study of Paulownia spp. as a short-rotation forestry crop for energy uses in Mediterranean conditions. Madera Bosques 2017, 23, 15–27. [Google Scholar]
- Melhuish, J.H., Jr.; Gentry, C.E.; Beckjord, P.R. Paulownia tomentosa seedling growth at differing levels of pH, nitrogen, and phosphorus. J. Environ. Hortic. 1990, 8, 205–207. [Google Scholar] [CrossRef]
- Kang, K.H.; Huh, H.; Kim, B.K.; Lee, C.K. An antiviral furanoquinone from Paulownia tomentosa Steud. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 1999, 13, 624–626. [Google Scholar] [CrossRef]
- Ayala-Astorga, G.I.; Alcaraz-Meléndez, L.; Ayala, F.P.; Castellanos, A.E. Effect of sodium chloride stress in Paulownia imperialis (Siebold & Zuccarini) and Paulownia fortunei (Seemann and Hemsley) plants growing in vitro. Agrochimica 2009, 53, 65–78. [Google Scholar]
- Yan, L.; Li, Y.; Dong, Y.; Fan, G. Transcriptional and post-transcriptional responses of diploid and autotetraploid Paulownia tomentosa × Paulownia fortunei under water-deficit condition. Braz. J. Bot. 2019, 42, 623–641. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Z.; Fan, G.; Dong, Y.; Deng, M.; Xu, E.; Zhai, X.; Cao, H. A comparison of the transcriptomes between diploid and autotetraploid Paulownia fortunei under salt stress. Physiol. Mol. Biol. Plants 2019, 25, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Belmonte-Ureña, L.J.; Garrido-Cardenas, J.A.; Camacho-Ferre, F. Analysis of world research on grafting in horticultural plants. HortScience 2020, 55, 112–120. [Google Scholar] [CrossRef]
- Yuan, B.Z.; Sun, J. Bibliometric analysis of potato research publications from Agronomy Category based on Web of Science from 2000 to 2021. Potato Res. 2022, 65, 233–253. [Google Scholar] [CrossRef]
- Yuan, B.Z.; Bie, Z.L.; Sun, J. Bibliometric Analysis of Cucumber (Cucumis sativus L.) Research Publications from Horticulture Category Based on the Web of Science. HortScience 2021, 56, 1304–1314. [Google Scholar] [CrossRef]
- Yuan, B.Z.; Bie, Z.L.; Sun, J. Bibliometric Analysis of Global Research on Muskmelon (Cucumis melo L.) Based on Web of Science. HortScience 2021, 56, 867–874. [Google Scholar] [CrossRef]
- Kulak, M.; Ozkan, A.; Bindak, R. A bibliometric analysis of the essential oil-bearing plants exposed to the water stress: How long way we have come and how much further? Sci. Hortic. 2019, 246, 418–436. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Manual for VOSviewer; Version 1.6.17; Universiteit Leiden and Erasmus Universiteit Rotterdam: Leiden, The Netherlands, 2021. [Google Scholar]
- Bahri, N.B.; Laribi, B.; Soufi, S.; Rezgui, S.; Bettaieb, T. Growth performance, photosynthetic status and bio-accumulation of heavy metals by Paulownia tomentosa (Thunb.) Steud growing on contaminated soils. Int. J. Agron. Agric. Res. 2015, 6, 32–43. [Google Scholar]
- Bahri, N.B.; Rezgui, S.; Bettaieb, T. Physiological responses of Paulownia tomentosa (Thunb.) steud grown on contaminated soils with heavy metals. J. New Sci. 2015, 23, 6. [Google Scholar]
- Tzvetkova, N.; Miladinova, K.; Ivanova, K.; Georgieva, T.; Geneva, M.; Markovska, Y. Possibility for using of two Paulownia lines as a tool for remediation of heavy metal contaminated soil. J. Environ. Biol. 2015, 36, 145. [Google Scholar]
- Doumett, S.; Lamperi, L.; Checchini, L.; Azzarello, E.; Mugnai, S.; Mancuso, S.; Petruzzelli, G.; Del Bubba, M. Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot scale assisted phytoremediation study: Influence of different complexing agents. Chemosphere 2008, 72, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Madejón, P.; Xiong, J.; Cabrera, F.; Madejón, E. Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortunei plantation. J. Environ. Manag. 2014, 144, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, Y.; Du, L.; Wu, Y.; Liu, Z.; Han, L. The potential of Paulownia fortunei seedlings for the phytoremediation of manganese slag amended with spent mushroom compost. Ecotoxicol. Environ. Saf. 2020, 196, 110538. [Google Scholar] [CrossRef] [PubMed]
- Macci, C.; Peruzzi, E.; Doni, S.; Poggio, G.; Masciandaro, G. The phytoremediation of an organic and inorganic polluted soil: A real scale experience. Int. J. Phytoremediat. 2016, 18, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Wenhua, L. Agro-Ecological Farming Systems in China; Man and the Biosphere Series; The Parthenon Publishing Group Limited: Carnforth, UK, 2001; Volume 26. [Google Scholar]
- Sun, J.; Yuan, B.Z. Mapping of the world rice research: A bibliometric analysis of top papers during 2008–2018. Ann. Libr. Inf. Stud. (ALIS) 2020, 67, 55–66. [Google Scholar]
- Stopar, K.; Mackiewicz-Talarczyk, M.; Bartol, T. Cotton fiber in Web of Science and Scopus: Mapping and visualization of research topics and publishing patterns. J. Nat. Fibers 2021, 18, 547–558. [Google Scholar] [CrossRef]
- Lee, K.; Enomae, T.; Inaba, M. Changes in the degree of degradation with position of painting papers in Japanese hanging scrolls by accelerated ageing using open and sealed Tube Methods. Stud. Conserv. 2023, 68, 43–53. [Google Scholar] [CrossRef]
- Bajaj, R.; Irvin, L.; Vaidya, B.N.; Shahin, L.; Joshee, N. Optimization of Micropropagation and Genetic Transformation Protocols for Paulownia elongata: A Short Rotation Fast Growing Bioenergy Tree. In Biofuels and Biodiesel; Humana: New York, NY, USA, 2021; pp. 271–284. [Google Scholar] [CrossRef]
- Chen, P.; Sun, J.H. Effects of temperature on gaseous and particulate formation from forest fires. Health Environ. Res. Online (HERO) 2008, 3, 171–176. [Google Scholar]
- Khan, A.; Khan, D.; Akbar, F. Bibliometric analysis of publications on research into cotton leaf curl disease. Discoveries 2020, 8, e109. [Google Scholar] [CrossRef]
- White-Gibson, A.; O’Neill, B.; Cooper, D.; Leonard, M.; O’Daly, B. Levels of evidence in pelvic trauma: A bibliometric analysis of the top 50 cited papers. Ir. J. Med. Sci. 2019, 188, 155–159. [Google Scholar] [CrossRef]
- Chinese Paulownia. Research Institute of Forestry. Available online: http://www.paulownia.cn/# (accessed on 29 August 2023).
- Chinese Paulownia. Weinan Research & Promotion Center for High Resistance Paulownia. Available online: https://www.chinesepaulownia.com (accessed on 29 August 2023).
- American Paulownia Association. Available online: https://paulowniatrees.org/about/about-the-american-paulownia-association/ (accessed on 29 August 2023).
- World Paulownia Institute. Available online: https://worldpaulownia.com (accessed on 29 August 2023).
Years | Number of Articles | Number of Authors | Number of Countries | Annual Number of Citations | Number Citation/Number Articles | Number of Journals |
---|---|---|---|---|---|---|
1971–1980 | 15 | 21 | 5 | 52 | 3.5 | 12 |
1981–1985 | 25 | 40 | 10 | 249 | 10.0 | 16 |
1986–1990 | 14 | 26 | 5 | 121 | 8.6 | 14 |
1991–1995 | 37 | 67 | 11 | 1389 | 37.5 | 29 |
1996–2000 | 41 | 88 | 12 | 828 | 20.2 | 32 |
2001–2005 | 47 | 123 | 21 | 1151 | 24.5 | 36 |
2006–2010 | 121 | 393 | 25 | 3177 | 26.3 | 92 |
2011–2015 | 194 | 597 | 35 | 3259 | 16.8 | 151 |
2016–2021 | 326 | 1078 | 52 | 1950 | 6.0 | 217 |
Total | 820 | n.a. | n.a. | 12176 | 153.4 | n.a. |
WoS Categories | Record Count | % of Total No. of Articles |
---|---|---|
Plant Sciences | 167 | 20.4 |
Forestry | 117 | 14.3 |
Materials Science Paper and Wood | 106 | 13.0 |
Environmental Sciences | 61 | 7.5 |
Biochemistry Molecular Biology | 58 | 7.1 |
Biotechnology Applied Microbiology | 58 | 7.1 |
Chemistry Multidisciplinary | 56 | 6.8 |
Chemistry Medicinal | 44 | 5.4 |
Agronomy | 43 | 5.3 |
Engineering Chemical | 36 | 4.4 |
Materials Science Multidisciplinary | 36 | 4.4 |
Multidisciplinary Sciences | 35 | 4.3 |
Pharmacology Pharmacy | 34 | 4.2 |
Ecology | 29 | 3.6 |
Energy Fuels | 29 | 3.6 |
Genetics Heredity | 27 | 3.3 |
Agricultural Engineering | 25 | 3.1 |
Horticulture | 25 | 3.1 |
Engineering Environmental | 19 | 2.3 |
Chemistry Applied | 18 | 2.2 |
Agriculture Multidisciplinary | 17 | 2.1 |
Chemistry Organic | 17 | 2.1 |
Materials Science Composites | 15 | 1.8 |
Biochemical Research Methods | 13 | 1.6 |
Chemistry Analytical | 13 | 1.6 |
Green Sustainable Science Technology | 12 | 1.7 |
Engineering Multidisciplinary | 11 | 1.3 |
Entomology | 11 | 1.3 |
Polymer Science | 11 | 1.3 |
Research Areas | Record Count | % of Total No. of Articles |
---|---|---|
Plant Sciences | 167 | 20.4 |
Materials Science | 160 | 19.5 |
Forestry | 117 | 14.3 |
Agriculture | 103 | 12.6 |
Chemistry | 102 | 12.5 |
Environmental Sciences Ecology | 85 | 10.4 |
Engineering | 73 | 9.0 |
Biochemistry Molecular Biology | 69 | 8.4 |
Biotechnology Applied Microbiology | 58 | 7.1 |
Pharmacology Pharmacy | 56 | 6.8 |
Science Technology Other Topics | 52 | 6.4 |
Energy Fuels | 29 | 3.5 |
Genetics Heredity | 27 | 3.3 |
Entomology | 11 | 1.3 |
Polymer Science | 11 | 1.3 |
Number of Categories for Each Article of Total Collection | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||||
N | % | N | % | N | % | N | % | N | % | |
WoS category | 437 | 53.2 | 245 | 30 | 109 | 13.3 | 24 | 3 | 4 | 0.5 |
Research area | 458 | 55.6 | 273 | 33.4 | 79 | 9.7 | 10 | 1.2 | 1 | 0.1 |
Publication Titles | Record Count | % of Total No. of Articles | QC | IF (2 Years) |
---|---|---|---|---|
Bioresources | 24 | 2.9 | 2 | 1.6 |
Advanced Materials Research | 13 | 1.6 | ||
PLOS One | 13 | 1.6 | 2 | 3.2 |
Agroforestry Systems | 10 | 1.3 | 2 | 2.5 |
Journalof Wood Science | 10 | 1.3 | 2 | 2.2 |
Industrial Cropsand Products | 9 | 1.1 | 1 | 5.6 |
Forests | 8 | 1 | 1 | 2.6 |
Journalof Natural Products | 8 | 1 | 1 | 4.1 |
Plant Cell Tissueand Organ Culture | 8 | 1 | 2 | 2.7 |
Abstractsof Papers American Chemical Society | 7 | 0.9 | ||
European Journalof Woodand Wood Products | 7 | 0.9 | 2 | 2.0 |
Holzforschung | 7 | 0.9 | 1 | 2.4 |
Mokuzai Gakkaishi | 7 | 0.9 | 4 | 0.2 |
Molecules | 7 | 0.9 | 2 | 4.4 |
American Forests | 6 | 0.7 | ||
Bioresource Technology | 6 | 0.7 | 1 | 9.6 |
Bulgarian Chemical Communications | 6 | 0.7 | 4 | 0.2 |
Cellulose Chemistryand Technology | 6 | 0.7 | 2 | 1.5 |
Phytochemistry | 6 | 0.7 | 1 | 4.1 |
Plant Disease | 6 | 0.7 | 1 | 4.4 |
Planta Medica | 6 | 0.7 | 2 | 3.4 |
Acta Physiologiae Plantarum | 5 | 0.6 | 2 | 2.4 |
Australasian Plant Pathology | 5 | 0.6 | 3 | 1.6 |
Forest Ecologyand Management | 5 | 0.6 | 1 | 3.6 |
Hortscience | 5 | 0.6 | 2 | 1.5 |
International Journalof Molecular Sciences | 5 | 0.6 | 1 | 5.9 |
Journalof Forestry Research | 5 | 0.6 | 2 | 2.1 |
New Forests | 5 | 0.6 | 1 | 2.6 |
Physiologia Plantarum | 5 | 0.6 | 1 | 4.5 |
Phytochemistry Letters | 5 | 0.6 | 3 | 1.7 |
Plant Cell Reports | 5 | 0.6 | 1 | 4.6 |
Scientific Reports | 5 | 0.6 | 1 | 4.4 |
Seed Scienceand Technology | 5 | 0.6 | 3 | 0.9 |
Affiliations | Papers | Time Cited WoS | No. Citation/No. Articles | Country |
---|---|---|---|---|
1. Henan Agricultural University | 71 | 725 | 10.2 | People’s Republic of China |
2. U.S. Department of Agriculture- USDA | 27 | 1016 | 37.6 | USA |
3. University of Belgrade | 25 | 305 | 12.2 | Serbia |
4. Chinese Academy of Sciences | 24 | 635 | 26.5 | People’s Republic of China |
5. University System of Georgia | 24 | 388 | 16.2 | USA |
6. Chinese Academy of Forestry | 22 | 243 | 11.1 | People’s Republic of China |
7. Universidad de Huelva | 19 | 334 | 17.6 | Spain |
8. Consejo Superior de Investig. Cientificas | 17 | 321 | 18.9 | Spain |
9. Fort Valley State University | 17 | 222 | 13.1 | USA |
10. University of North Carolina | 17 | 275 | 16.2 | USA |
11. University of Veterinary Sciences Brno | 17 | 504 | 29.7 | Czech Republic |
12. Bulgarian Academy of Sciences | 16 | 105 | 6.6 | Bulgaria |
13. Central South Univ. Forestry Technology | 16 | 85 | 5.3 | People’s Republic of China |
14. Tianjin University Science Technology | 16 | 188 | 11.8 | People’s Republic of China |
15. Universidade de Vigo | 15 | 147 | 9.8 | Spain |
16. Forestry Acad Henan | 14 | 96 | 6.9 | People’s Republic of China |
17. Kangwon National University | 13 | 191 | 14.7 | People’s Republic of China |
18. North Carolina State University | 12 | 233 | 19.4 | USA |
19. University of Sofia | 12 | 68 | 5.7 | Bulgaria |
20. Gorgan Univ Agr Sci Nat Resources | 11 | 102 | 9.3 | Iran |
21. Nanjing Tech University | 11 | 89 | 8.1 | People’s Republic of China |
22. Istanbul University | 10 | 306 | 30.6 | Turkey |
Total | 426 | 6578 | 337.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lugli, L.; Mezzalira, G.; Lambardi, M.; Zhang, H.; La Porta, N. Paulownia spp.: A Bibliometric Trend Analysis of a Global Multi-Use Tree. Horticulturae 2023, 9, 1352. https://doi.org/10.3390/horticulturae9121352
Lugli L, Mezzalira G, Lambardi M, Zhang H, La Porta N. Paulownia spp.: A Bibliometric Trend Analysis of a Global Multi-Use Tree. Horticulturae. 2023; 9(12):1352. https://doi.org/10.3390/horticulturae9121352
Chicago/Turabian StyleLugli, Linda, Giustino Mezzalira, Maurizio Lambardi, Huaxin Zhang, and Nicola La Porta. 2023. "Paulownia spp.: A Bibliometric Trend Analysis of a Global Multi-Use Tree" Horticulturae 9, no. 12: 1352. https://doi.org/10.3390/horticulturae9121352
APA StyleLugli, L., Mezzalira, G., Lambardi, M., Zhang, H., & La Porta, N. (2023). Paulownia spp.: A Bibliometric Trend Analysis of a Global Multi-Use Tree. Horticulturae, 9(12), 1352. https://doi.org/10.3390/horticulturae9121352