The Effects of Potassium Fertilizer on the Active Constituents and Metabolites of Bulbs from Lilium davidii var. unicolor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experimental Design
2.3. Sample Extraction
2.4. Determination of Total Phenolics, Flavonoids, and Flavanol Contents
2.5. Determination of Saponins and Polysaccharide Contents
2.6. Untargeted Metabolomics Analysis
2.6.1. LC–MS Analysis
2.6.2. Data Processing
2.7. Determination of Antioxidant Activity
2.8. Statistical Analysis
3. Results
3.1. Total Phenolic, Flavonoid, and Flavanol Content
3.2. Polysaccharide and Saponin Content
3.3. Antioxidant Activity
3.4. Metabolite Profiling and Classification
3.5. Differentially Accumulated Metabolite (DAM) Identification and Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jin, L.; Zhang, Y.; Yan, L.; Guo, Y.; Niu, L. Phenolic Compounds and Antioxidant Activity of Bulb Extracts of Six Lilium Species Native to China. Molecules 2012, 17, 9361–9378. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Cai, Y.; Lu, Y.; Shi, C.; Han, X.; Liu, L.; Yin, X.; Lan, X.; Guo, X. Effect of Microwave Treatments Combined with Hot-Air Drying on Phytochemical Profiles and Antioxidant Activities in Lily Bulbs (Lilium Lancifolium). Foods 2023, 12, 2344. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Ding, X.; Shi, J.; Jiang, F.; Ding, L.; Zhao, B.; Wang, F.; Zhang, J. Effect of Simulated Digestion In Vitro on the Rheology and Biological Activity of Lilium davidii var. unicolor Salisb Polysaccharide. J. Plant Biochem. Biotechnol. 2023, 32, 587–596. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Zhang, W.; Wu, H.; Wang, Z. Evaluation of Nutrition Components in Lanzhou Lily Bulb by Confocal Raman Microscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 244, 118837. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.-C.; Liu, Y.-J.; He, G.-R.; Cao, Y.-W.; Bi, M.-M.; Song, M.; Yang, P.-P.; Xu, L.-F.; Ming, J. Comprehensive Analysis of Secondary Metabolites in the Extracts from Different Lily Bulbs and Their Antioxidant Ability. Antioxidants 2021, 10, 1634. [Google Scholar] [CrossRef]
- Xu, C.; Tang, T.; Chen, R.; Liang, C.; Liu, X.; Wu, C.; Yang, Y.; Yang, D.; Wu, H. A Comparative Study of Bioactive Secondary Metabolite Production in Diploid and Tetraploid Echinacea purpurea (L.) Moench. Plant Cell Tissue Organ Cult. 2014, 116, 323–332. [Google Scholar] [CrossRef]
- Xu, J.; Yu, Y.; Shi, R.; Xie, G.; Zhu, Y.; Wu, G.; Qin, M. Organ-Specific Metabolic Shifts of Flavonoids in Scutellaria baicalensis at Different Growth and Development Stages. Molecules 2018, 23, 428. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.-Z.; Ni, J.; Tang, J.-M.; Sun, D.-Y.; Yan, Z.-G.; Zhang, J.; Niu, L.-X.; Zhang, Y.-L. Bioactive Components, Antioxidant and Antimicrobial Activities of Paeonia rockii Fruit during Development. Food Chem. 2021, 343, 128444. [Google Scholar] [CrossRef]
- Li, L.-Q.; Lyu, C.-C.; Li, J.-H.; Tong, Z.; Lu, Y.-F.; Wang, X.-Y.; Ni, S.; Yang, S.-M.; Zeng, F.-C.; Lu, L.-M. Physiological Analysis and Proteome Quantification of Alligator Weed Stems in Response to Potassium Deficiency Stress. Int. J. Mol. Sci. 2019, 20, 221. [Google Scholar] [CrossRef]
- Sha, X.; Zhang, P.; Yang, Y.; Bu, H.; Ma, Y.; Jin, L. Effects of Potassium Application on Lilium davidii var. unicolor Growth, Polysaccharide Accumulation, and Metabolism. Horticulturae 2022, 8, 940. [Google Scholar] [CrossRef]
- Li, R.; Volenec, J.J.; Joern, B.C.; Cunningham, S.M. Potassium and Nitrogen Effects on Carbohydrate and Protein Metabolism in Alfalfa Roots. J. Plant Nutr. 1997, 20, 511–529. [Google Scholar] [CrossRef]
- Farley, R.F.; Draycott, A.P. Growth and Yield of Sugar Beet in Relation to Potassium and Sodium Supply. J. Sci. Food Agric. 1975, 26, 385–392. [Google Scholar] [CrossRef]
- Bednarz, C.W.; Oosterhuis, D.M. Physiological Changes Associated with Potassium Deficiency in Cotton. J. Plant Nutr. 1999, 22, 303–313. [Google Scholar] [CrossRef]
- Huber, S.C. Biochemical Basis for Effects of K-Deficiency on Assimilate Export Rate and Accumulation of Soluble Sugars in Soybean Leaves 1. Plant Physiol. 1984, 76, 424–430. [Google Scholar] [CrossRef]
- Ali, L.; Alsanius, B.W.; Rosberg, A.K.; Svensson, B.; Nielsen, T.; Olsson, M.E. Effects of Nutrition Strategy on the Levels of Nutrients and Bioactive Compounds in Blackberries. Eur. Food Res. Technol. 2012, 234, 33–44. [Google Scholar] [CrossRef]
- Buchelt, A.C.; Teixeira, G.C.M.; Oliveira, K.S.; Rocha, A.M.S.; de Mello Prado, R.; Caione, G. Silicon Contribution via Nutrient Solution in Forage Plants to Mitigate Nitrogen, Potassium, Calcium, Magnesium, and Sulfur Deficiency. J. Soil Sci. Plant Nutr. 2020, 20, 1532–1548. [Google Scholar] [CrossRef]
- He, J.-Y.; Zhang, Y.-H.; Ma, N.; Zhang, X.-L.; Liu, M.-H.; Fu, W.-M. Comparative Analysis of Multiple Ingredients in Rosa Roxburghii and R. Sterilis Fruits and Their Antioxidant Activities. J. Funct. Foods 2016, 27, 29–41. [Google Scholar] [CrossRef]
- Li, X.; Lin, J.; Gao, Y.; Han, W.; Chen, D. Antioxidant Activity and Mechanism of Rhizoma cimicifugae. Chem. Cent. J. 2012, 6, 140. [Google Scholar] [CrossRef]
- Barraza-Elenes, C.; Camacho-Hernández, I.L.; Yahia, E.M.; Zazueta-Morales, J.J.; Aguilar-Palazuelos, E.; Heredia, J.B.; Muy-Rangel, D.; Delgado-Nieblas, C.I.; Carrillo-López, A. Analysis by UPLC–DAD–ESI-MS of Phenolic Compounds and HPLC–DAD-Based Determination of Carotenoids in Noni (Morinda citrifolia L.) Bagasse. J. Agric. Food Chem. 2019, 67, 7365–7377. [Google Scholar] [CrossRef]
- Wang, Y.; Bu, H.; Wang, H.; Zhang, P.; Jin, L. Effects of Applying Nitrogen and Potassium on Lilium Lancifolium Growth and Accumulation of Secondary Metabolites in Bulbs. Horticulturae 2023, 9, 396. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Wei, H.; Zhang, Y.; Guo, Z.; Qiu, Y.; Wen, L.; Xie, Z. Structural Characterization of Lanzhou Lily (Lilium davidii var. unicolor) Polysaccharides and Determination of Their Associated Antioxidant Activity. J. Sci. Food Agric. 2020, 100, 5603–5616. [Google Scholar] [CrossRef]
- Gülçin, İ. Antioxidant Activity of Food Constituents: An Overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef]
- Taslimi, P.; Gulçin, İ. Antioxidant and Anticholinergic Properties of Olivetol. J. Food Biochem. 2018, 42, e12516. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Esin Karademir, S.; Erçağ, E. The Cupric Ion Reducing Antioxidant Capacity and Polyphenolic Content of Some Herbal Teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Li, W.; Dawuda, M.M.; Huo, J.; Li, C.; Wang, C.; Liao, W. Hydrogen Sulfide Reduced Colour Change in Lanzhou Lily-Bulb Scales. Postharvest Biol. Technol. 2021, 176, 111520. [Google Scholar] [CrossRef]
- Yan, Z.; He, X.; Guo, K.; Li, X.; Yang, X.; Jin, H.; Su, A.; Zheng, W.; Xu, L.; Song, X.; et al. Allelochemicals from the Rhizosphere of Lanzhou Lily: Discovery of the Autotoxic Compounds of a Bulb Crop. Sci. Hortic. 2019, 250, 121–126. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, X.; Liu, X.; Yao, Y.; Liu, Z.; Wei, L.; Hou, X.; Gao, R.; Li, Y.; Wang, C.; et al. Hydrogen Gas Improves the Postharvest Quality of Lanzhou Lily (Lilium davidii var. unicolor) Bulbs. Plants 2023, 12, 946. [Google Scholar] [CrossRef]
- Sharif, R.; Su, L.; Chen, X.; Qi, X. Hormonal Interactions Underlying Parthenocarpic Fruit Formation in Horticultural Crops. Hortic. Res. 2022, 9, uhab024. [Google Scholar] [CrossRef]
- Jin, Y.; Lai, S.; Chen, Z.; Jian, C.; Zhou, J.; Niu, F.; Xu, B. Leaf Photosynthetic and Functional Traits of Grassland Dominant Species in Response to Nutrient Addition on the Chinese Loess Plateau. Plants 2022, 11, 2921. [Google Scholar] [CrossRef]
- Wei, K.; Liu, M.; Shi, Y.; Zhang, H.; Ruan, J.; Zhang, Q.; Cao, M. Metabolomics Reveal That the High Application of Phosphorus and Potassium in Tea Plantation Inhibited Amino-Acid Accumulation but Promoted Metabolism of Flavonoid. Agronomy 2022, 12, 1086. [Google Scholar] [CrossRef]
- Villette, J.; Cuéllar, T.; Verdeil, J.-L.; Delrot, S.; Gaillard, I. Grapevine Potassium Nutrition and Fruit Quality in the Context of Climate Change. Front. Plant Sci. 2020, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhao, X.; Xiao, Q.; Hu, W.; Wang, P.; Luo, Y.; Xia, H.; Lin, L.; Lv, X.; Liang, D.; et al. Identification of Key Genes Induced by Different Potassium Levels Provides Insight into the Formation of Fruit Quality in Grapes. Int. J. Mol. Sci. 2023, 24, 1218. [Google Scholar] [CrossRef]
- Nguyen, P.M.; Kwee, E.M.; Niemeyer, E.D. Potassium Rate Alters the Antioxidant Capacity and Phenolic Concentration of Basil (Ocimum basilicum L.) Leaves. Food Chem. 2010, 123, 1235–1241. [Google Scholar] [CrossRef]
- Wang, F.; Wang, W.; Niu, X.; Huang, Y.; Zhang, J. Isolation and Structural Characterization of a Second Polysaccharide from Bulbs of Lanzhou Lily. Appl. Biochem. Biotechnol. 2018, 186, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Ma, J.; Akhtar, S.; Khan, Z.I.; Ahmad, K.; Ashfaq, A.; Nawaz, H.; Nadeem, M. Assessment of Chromium Toxicity and Potential Health Implications of Agriculturally Diversely Irrigated Food Crops in the Semi-Arid Regions of South Asia. Agric. Water Manag. 2022, 272, 107833. [Google Scholar] [CrossRef]
- Yang, H.; Yang, S.; Chen, X.; Zhang, J.; Zhang, Y. Dynamic Changes in Flavonoid, Phenolic, and Polysaccharide Contents in Leaves and Fruits of Sea Buckthorn during the Growing Season in Southeastern Tibet Plateau. Sci. Hortic. 2023, 307, 111497. [Google Scholar] [CrossRef]
- Shi, Z.; Wei, F.; Wan, R.; Li, Y.; Wang, Y.; An, W.; Qin, K.; Dai, G.; Cao, Y.; Feng, J. Impact of Nitrogen Fertilizer Levels on Metabolite Profiling of the Lycium barbarum L. Fruit. Molecules 2019, 24, 3879. [Google Scholar] [CrossRef]
- Amir, R.; Galili, G.; Cohen, H. The Metabolic Roles of Free Amino Acids during Seed Development. Plant Sci. 2018, 275, 11–18. [Google Scholar] [CrossRef]
Treatment | CK | K3 |
---|---|---|
N (609.8 mg/L) and P (88.4 mg/L) | 0 | 895.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, L.; Yuan, Q.; Bi, J.; Zhang, G.; Zhang, P. The Effects of Potassium Fertilizer on the Active Constituents and Metabolites of Bulbs from Lilium davidii var. unicolor. Horticulturae 2023, 9, 1216. https://doi.org/10.3390/horticulturae9111216
Jin L, Yuan Q, Bi J, Zhang G, Zhang P. The Effects of Potassium Fertilizer on the Active Constituents and Metabolites of Bulbs from Lilium davidii var. unicolor. Horticulturae. 2023; 9(11):1216. https://doi.org/10.3390/horticulturae9111216
Chicago/Turabian StyleJin, Lei, Qing Yuan, Jiao Bi, Gang Zhang, and Ping Zhang. 2023. "The Effects of Potassium Fertilizer on the Active Constituents and Metabolites of Bulbs from Lilium davidii var. unicolor" Horticulturae 9, no. 11: 1216. https://doi.org/10.3390/horticulturae9111216
APA StyleJin, L., Yuan, Q., Bi, J., Zhang, G., & Zhang, P. (2023). The Effects of Potassium Fertilizer on the Active Constituents and Metabolites of Bulbs from Lilium davidii var. unicolor. Horticulturae, 9(11), 1216. https://doi.org/10.3390/horticulturae9111216